How to best reconcile Big Bang Nucleosynthesis with Li abundance determinations? Exotic BBN
Ryan et al.
Possible sources for the discrepancy • Nuclear Rates - Restricted by solar neutrino flux Discussed by Coc - Role of resonances • Stellar Depletion Discussed by Richard, Korn, Lind • Stellar parameters Discussed by Ryan dLi . 08 dlng = . 09 dLi dT = . 5 100 K
Possible sources for the discrepancy • Stellar Depletion Discussed by Richard, Korn, Lind • Stellar parameters Discussed by Ryan dLi . 08 dlng = . 09 dLi dT = . 5 100 K • Particle Decays
Limits on Unstable particles due to Electromagnetic/Hadronic Production and Destruction of Nuclei 3 free parameters ζ X = n X m X /n γ = m X Y X η , m X , and τ X • Start with non-thermal injection spectrum (Pythia) • Evolve element abundances including thermal (BBN) and non-thermal processes.
E.g., Gravitino decay Cyburt, Ellis, Fields, Luo, Olive, Spanos χ + W − ( H − ) , e G → ˜ e f f, e i γ ( Z ) , e i e χ 0 χ 0 i H 0 G → ˜ G → ˜ G → ˜ G → ˜ g g. plus relevant 3-body decays
D/H 3e-05 7 Li/H 1e-10 10 1 6 Li/ 7 Li 0.1 1e-02 10 2 10 3 10 4 10 5 10 6 τ (sec) Jedamzik Kawasaki, Kohri, Moroi
0.230 0.240 3 x 10 -4 10 -4 3.0 0.3 3.2 x 10 -5 1.0 3.0 x 10 -9 1.0 x 10 -9 2.75 x 10 -10 0.1 0.05 Based on m 1/2 = 300 GeV, tan β =10 ; B h ~ 0.2
CMSSM M in = M GUT , tan � = 10, µ > 0 M in = M GUT , tan � = 55, µ > 0 3000 3000 3000 3000 m 0 (GeV) m 0 (GeV) 2000 2000 2000 2000 1000 1000 1000 1000 0 0 0 0 100 100 200 200 300 300 400 400 500 500 600 600 700 700 800 800 900 900 1000 1000 100 100 1000 1000 2000 2000 m 1/2 (GeV) m 1/2 (GeV) EOSS
Gravitino Decays and Li m 3/2 = 250 GeV m 3/2 = 250 GeV = 500 GeV = 750 GeV = 500 GeV = 750 GeV = 1000 GeV = 1000 GeV = 5000 GeV = 5000 GeV Cyburt, Ellis, Fields, Luo, Olive, Spanos
0.230 3 x 10 -4 10 -4 0.240 3.2 x 10 -5 3.0 1.0 2.75 x 10 -10 1.0 x 10 -9 0.1 0.05 co-annihilation strip, tan β =10 ; m 3/2 = 250 GeV
0.230 1.0 0.240 3 x 10 -4 0.3 10 -4 3.2 x 10 -5 3.0 x 10 -9 1.0 x 10 -9 0.1 0.05 co-annihilation strip, tan β =10 ; m 3/2 = 1000 GeV
0.230 0.240 3 x 10 -4 10 -4 3.0 3.2 x 10 -5 0.3 1.0 3.0 x 10 -9 1.0 x 10 -9 2.75 x 10 -10 0.1 0.05 Benchmark point C, tan β =10 ; m 1/2 = 400 GeV
Uncertainties There are only a few non-thermal m 3/2 (TeV) 21 ( n 4 He → npt ), rates which affect the result 7 Li/H -8 0.02 p 4 He → np 3 He 20% p 4 He → ddp 40% 0.04 p 4 He → dnpp 40% -9 d He → Li γ 0.04 Log ! 3/2 4 6 t 4 He → 6 Li n 20% n He → dt 0.06 -0.06 3 He 4 He → 6 Li p Log ! 20% -10 n 4 He → npt 20% 0.02 n 4 He → ddn 40% -11 n 4 He → dnnp 40% p 4 He → ppt 20% 6 7 -0.02 n 4 He → nn 3 He -12 20% -13 1 2 3 4 5 m 3/2 (TeV)
How well can you do 2 7 Li � 2 � � 2 D H − 2 . 82 × 10 − 5 H − 1 . 23 × 10 − 10 � Y p − 0 . 256 � χ 2 ≡ s 2 + + + i , 0 . 011 0 . 27 × 10 − 5 0 . 71 × 10 − 10 i SBBN: χ 2 = 31.7 - field stars Point C -8 SBBN: χ 2 = 21.8 - GC stars* -9 * 6 -10 Log � 3/2 is probably beyond the reach of present-day interferometers. NGC 6397 appears to have a higher Li content than field stars 50 of the same metallicity. This needs to be confirmed by a homo- -11 32 9.2 geneous analysis of field stars, with the same models and meth- ods. This may or may not be related to the fact that this cluster on is nitrogen rich, compared to field stars of the same metallicity -12 - (Pasquini et al. 2008). - -13 * from Gonzales Hernandez et al. 2000 3000 4000 5000 m 3/2 (GeV)
� s 2 D/H ( × 10 − 5 ) 7 Li/H ( × 10 − 10 ) χ 2 m 3 / 2 [GeV] Log 10 ( ζ 3 / 2 / [GeV]) Y p i BBN —— —— 0.2487 2.52 5.12 —— 31.7 C 4380 − 9 . 69 0.2487 3.15 2.53 0.26 5.5 E 4850 − 9 . 27 0.2487 3.20 2.42 0.29 5.5 L 4380 − 9 . 69 0.2487 3.21 2.37 0.26 5.4 M 4860 − 10 . 29 0.2487 3.23 2.51 1.06 7.0 C 4680 − 9 . 39 0.2487 3.06 2.85 0.08 2.0 M 4850 − 10 . 47 0.2487 3.11 2.97 0.09 2.7 C 3900 − 10 . 05 0.2487 3.56 1.81 0.02 2.8 C 4660 − 9 . 27 0.2487 3.20 2.45 0.16 1.1 Point C Point C -8 -8 -9 -9 -10 -10 Log � 3/2 Log � 3/2 50 50 4.6 2.3 32 32 -11 -11 6 4.6 6 9.2 -12 -12 9.2 -13 -13 increased uncertainty in D/H + GC value for Li 2000 3000 4000 5000 2000 3000 4000 5000 m 3/2 (GeV) m 3/2 (GeV)
General feature of “fixing” Li: Increased D/H 4.5x10 -10 4.5x10 -10 Point C 4x10 -10 4x10 -10 Point E 3.5x10 -10 3.5x10 -10 3x10 -10 3x10 -10 7 Li/H 7 Li/H 2.5x10 -10 2.5x10 -10 2x10 -10 2x10 -10 1.5x10 -10 1.5x10 -10 1x10 -10 1x10 -10 5x10 -11 5x10 -11 9x10 -5 0.0001 9x10 -5 0.0001 2x10 -5 3x10 -5 4x10 -5 5x10 -5 6x10 -5 7x10 -5 8x10 -5 2x10 -5 3x10 -5 4x10 -5 5x10 -5 6x10 -5 7x10 -5 8x10 -5 D/H D/H Cyburt, Ellis, Fields, Luo, Olive, Spanos Olive, Petitjean, Vangioni, Silk
Evolution of D, Li With post BBN processing of Li, D/H reproduces upper end of absorption data - dispersion due to in situ chemical destruction Olive, Petitjean, Vangioni, Silk
Effects of Bound States ~ • In SUSY models with a τ NLSP, bound states form ~ between 4 He and τ • The 4 He (D, γ ) 6 Li reaction is normally highly suppressed (production of low energy γ ) • Bound state reaction is not suppressed D γ 6 D Li − 4 6 He 4 X − Li ) ( He X Pospelov
m 3/2 = 100 GeV , tan β = 10 , µ > 0 m 3/2 = 100 GeV , tan β = 10 , µ > 0 2000 2000 2000 2000 7 Li = 4.3 3 He/D = 1 4.3 7 Li = 4.3 m 0 (GeV) m 0 (GeV) 6 Li / 7 Li = 0.15 0.01 6 Li / 7 Li = 0.15 0.01 3 He/D = 1 1000 1000 1000 1000 0.15 4.0 4.0 D = 4.0 2.2 D = 4.0 2.2 0 0 0 0 100 100 1000 1000 2000 2000 3000 3000 4000 4000 5000 5000 100 100 1000 1000 2000 2000 3000 3000 4000 4000 5000 5000 m 1/2 (GeV) m 1/2 (GeV) Cyburt, Ellis, Fields, KO, Spanos
m 3/2 = 0.2m 0 , tan β = 10 , µ > 0 m 3/2 = 0.2m 0 , tan β = 10 , µ > 0 2000 2000 2000 2000 3 He/D = 1 3 He/D = 1 7 Li = 4.3 7 Li = 4.3 6 Li / 7 Li = 0.15 m 0 (GeV) m 0 (GeV) 0.01 1000 1000 1000 1000 6 Li / 7 Li = 0.15 0.01 D = 4.0 D = 4.0 0 0 0 0 1 100 100 1000 1000 2000 2000 3000 3000 4000 4000 5000 5000 100 100 1000 1000 2000 2000 3000 3000 4000 4000 5000 5000 m 1/2 (GeV) m 1/2 (GeV) Cyburt, Ellis, Fields, KO, Spanos
A 6 Li Plateau? Observers may not see one, but theorist do predict one! Thomas et al. BBN: 6 Li/H ~ 10 -14 Vangioni et al. Dark Matter: Jedamzik tan � = 10 tan � = 10 (focus point) tan � = 55 10 -12 tan � = 55 (focus point) 6 Li/H abundance 10 -13 Ellis et al. BBN 10 -14 100 1000 m 1/2 [GeV]
Axion Condensation • Axion dark matter forms a Bose-Einstein condensate through gravitational self-interactions. Interactions between cold axion fluid cool photon gas: � 3 / 4 � 2 η 10 , BBN = η 10 , WMAP = 4 . 57 ± 0 . 11 3 ⇒ Li/H ~ 2 x 10 -10 but D/H ~ 4.5 x 10 -5 Erken, Sikivie, Tam, Yang
Possible sources for the discrepancy • Stellar parameters dLi . 08 dlng = . 09 dLi Discussed by Ryan dT = . 5 100 K • Particle Decays • Variable Constants
How could varying α a ff ect BBN? F T 5 ∼ Γ ( T f ) ∼ H ( T f ) ∼ √ G N NT 2 G 2 f Recall in equilibrium, n p ∼ e − ∆ m/T fixed at freezeout Helium abundance, 2( n/p ) Y ∼ 1+( n/p ) If T f is higher, ( n/p ) is higher, and Y is higher
Limits on α from BBN Contributions to Y come from n/p which in turn come from Δ mN Contributions to ∆ m N : Kolb, Perry, & Walker Campbell & Olive ∆ m N ∼ a α em Λ QCD + bv Bergstrom, Iguri, & Rubinstein Changes in α , Λ QCD , and/or v all induce changes in ∆ m N and hence Y Y � ∆ 2 m N ∆ Y ∆ m N ∼ ∆ α α < 0 . 05 If ∆ α arises in a more complete theory the e ff ect may be greatly enhanced: ∆ Y Y � O (100) ∆ α α and ∆ α α < few × 10 − 4
Coupled Variations : Campbell and Olive Langacker, Segre, and Strassler Dent and Fairbairn Calmet and Fritzsch Recall, Damour, Piazza, and Veneziano UV ) ≡ g 2 s ( M 2 UV ) 4 π α s ( M 2 = b 3 ln( M 2 UV / Λ 2 ) 4 π � 2 / 27 � m c m b m t � � 2 π Λ = µ exp − µ 3 9 α s ( µ ) � � α + 2 3 ∆ v v + ∆ h c + ∆ h b + ∆ h t ∆Λ = R ∆ α 27 h c h b h t Λ ( R ~ 30, but very model dependent Dine et al.
Fermion Masses: G F ∝ 1 /v 2 m f ∝ h f v Also expect variations in Yukawas, ∆ α U ∆ h h = 1 2 α U But in theories with radiative electroweak symmetry breaking v ∼ M P exp( − 2 π c/ α t ) Thus small changes in h t will induce large changes in v ∆ v = S ∆ α v ∼ 80 ∆ α U ∆ v v α U α
Approach: Consider possible variation of Yukawa, h, or fine-structure constant, α Include dependence of Λ on α ; of v on h, etc. Consider effects on: Q = Δ m N, τ N, B D and with ∆ h ∆ α U h = 1 2 α U ∆ B D = − [6 . 5(1 + S ) − 18 R ] ∆ α B D α ∆ Q = (0 . 1 + 0 . 7 S − 0 . 6 R ) ∆ α Q α ∆ τ n = − [0 . 2 + 2 S − 3 . 8 R ] ∆ α α , τ n Coc, Nunes, Olive, Uzan, Vangioni Dmitriev & Flambaum
Recommend
More recommend