big bang nucleosynthesis bbn
play

Big Bang - PowerPoint PPT Presentation

Big Bang Nucleosynthesis (BBN) 1. Introduction BBN: Theory vs. Observation 1. Introduction BBN: Theory vs.


  1. 東京大学宇宙線研究所 川崎雅裕 元素合成の現状 研究会「宇宙初期における時空と物質の進化」 Big Bang Nucleosynthesis (BBN)

  2. 1. Introduction BBN: Theory vs. Observation

  3. 1. Introduction BBN: Theory vs. Observation

  4. 今日の予定 • Introduction • He4 • Li7 • Li6 • D

  5. 2. He4

  6. NGC 6611 Measurement of He in HII region • HII region • OB stars ionize H and He • E(HI)= 13.6eV, E(HeI)= 24.6eV,E(HeII)= 56.4eV • Recombination lines H II HeII • measure HeII/HII UV Fluxes HII HII Recombination Lines O,B Stars HeII T ~ 30000-50000K HeII

  7. Energy Level Diagram of HeI Benjamin, Skillman, Smits 1999, ApJ 514,307

  8. MRK 193 Izotov, Thuan, Lipovetsky (1994) Spectrum 3889Å 5876Å 7065Å 6678Å 4471Å

  9. Abundance of singly ionized Helium y + = n (HeII) /n (HII) � � � W ( λ ) + a HeI � F ( λ ) E ( H β ) W ( H β ) 10 f ( λ ) C ( H β ) 1 y + = F ( H β ) E ( λ ) W ( H β ) + a HI W ( λ ) f λ E ( Hβ ) • : Theoretical emissivity scaled to H β E ( λ ) • : observed line intensity F ( λ ) • : underlying stellar absorption a HI , a HeI • : equivalent width L H β = W ( H β ) L λ ( λ 4861) W ( λ ) • : extinction relative to H β f ( λ ) C ( H β ) • : optical depth function with collisional correction f λ ( τ )

  10. Abundance of singly ionized Helium y + = n (HeII) /n (HII) � � � W ( λ ) + a HeI � F ( λ ) E ( H β ) W ( H β ) 10 f ( λ ) C ( H β ) 1 y + = F ( H β ) E ( λ ) W ( H β ) + a HI W ( λ ) f λ E ( Hβ ) • : Theoretical emissivity scaled to H β E ( λ ) • : observed line intensity F ( λ ) • : underlying stellar absorption a HI , a HeI HI balmer lines • : equivalent width L H β = W ( H β ) L λ ( λ 4861) W ( λ ) • : extinction relative to H β f ( λ ) C ( H β ) • : optical depth function with collisional correction f λ ( τ )

  11. Reddening and Stellar absorption • Reddening (extinction) scattering and absorption by interstellar dust I λ = I λ 0 e − τ λ extinction law τ λ = Cf ( λ ) � I ( λ ) � F ( λ ) � � log = log + C ( Hβ ) f ( λ ) I ( Hβ ) F ( Hβ ) intrinsic line observed line intensity intensity • Underlying stellar absorption Solving for reddening and underlying absorption

  12. Hα/Hβ, Hγ/Hβ, Hδ/Hβ ⇒ C ( Hβ ) , a HI • correction for stellar absorption � W ( λ ) + a HI � W: EW (equivalent width) F A ( λ ) = F ( λ ) W ( λ ) L H β = W ( H β ) L λ ( λ 4861) • reddening correction I ( λ ) F A ( λ ) F A ( H β )10 f ( λ ) C ( H β ) X R ( λ ) = I ( H β ) = • theoretical value X T (6563) = 0 . 3862(log T 4 ) 2 − 0 . 4817 log T 4 + 2 . 86 . . . T 4 ≡ T/ 10 4 K • take minimum χ 2 ( X R ( λ ) − X T ( λ )) 2 χ 2 = � σ 2 X R ( λ ) λ

  13. Abundance of singly ionized Helium y + = n (HeII) /n (HII) � � � W ( λ ) + a HeI � F ( λ ) E ( H β ) W ( H β ) 10 f ( λ ) C ( H β ) 1 y + = F ( H β ) E ( λ ) W ( H β ) + a HI W ( λ ) f λ E ( Hβ ) • : Theoretical emissivity scaled to H β E ( λ ) theory • : observed line intensity F ( λ ) obs. • : underlying stellar absorption a HI , a HeI HI balmer lines • : equivalent width W ( λ ) • : extinction relative to H β f ( λ ) C ( H β ) • : optical depth function with collisional correction f λ ( τ )

  14. Theoretical emissivities Benjamin, Skillman, Smits 1999, ApJ 514,307 [BSS] 0 . 904 T − 0 . 173 − 0 . 00054 n e E ( H β ) /E (3889) = 4 . 297 T 0 . 090 − 0 . 0000063 n e E ( H β ) /E (4026) = 2 . 010 T 0 . 127 − 0 . 00041 n e E ( H β ) /E (4471) = 0 . 735 T 0 . 230 − 0 . 00063 n e E ( H β ) /E (5876) = 2 . 580 T 0 . 249 − 0 . 00020 n e E ( H β ) /E (6678) = 12 . 45 T − 0 . 917 E ( H β ) /E (3889) = [3 . 494 − (0 . 793 − 0 . 0015 n e + 0 . 000000696 n 2 / e ) T ]

  15. Helium Abundance � � � W ( λ ) + a HeI � F ( λ ) E ( H β ) W ( H β ) 10 f ( λ ) C ( H β ) 1 y + = F ( H β ) E ( λ ) W ( H β ) + a HI W ( λ ) f λ determine y + ( λ ) 1 � � y = ¯ σ ( λ ) 2 / minimize χ 2 parameters σ ( λ ) 2 λ λ ( T ) , n e , a HeI , τ [ T = T(OIII) ] uncetainties in ( y + ( λ ) − ¯ y ) 2 χ 2 = � ∆ χ 2 = 1 parameters σ ( λ ) 2 λ

  16. λ2321 λ4363 λ4959 λ5007 Osterbrock’s text book §5.2 Temp. measurement from [OIII] lines OIII 1 S 0 = 7 . 73 exp[(3 . 29 × 10 4 ) /T ] j λ 4959 + j λ 5007 1 + 4 . 5 × 10 − 4 ( n e /T 1 / 2 ) j λ 4363 collisional de-excitation 1 D 2 T 3 P

  17. MRK 193 Izotov, Thuan, Lipovetsky (1994) Spectrum 3889Å 5876Å 7065Å 6678Å 4471Å

  18. Recent Works • Izotov & Thuan 1998, 2004 • 45 (89) low metallicity HII regions • use [OIII] emission lines to determine T T (HeII) = T (OIII) Y p = 0 . 244 ± 0 . 002 • Peimbert,Peimbert & Ruitz 2000 • HII region NGC 346 in SMC • use HeI emission line to determine T T (HeII) < T (OIII) Y p = 0 . 2345 ± 0 . 0026 • Luridiana et al 2003 • 5 metal poor HII regions Y p = 0 . 239 ± 0 . 002

  19. Izotov, Thuan 2004 Fig. 2.— Linear regressions of the helium mass fraction Y vs. oxygen and nitrogen abun- dances for a total of 82 H ii regions in 76 blue compact galaxies. In panels a) and b), Y was derived using the 3 λ 4471, λ 5876 and λ 6678 He i lines, and in panels c) and d), Y was derived using the 5 λ 3889, λ 4471, λ 5876, λ 6678 and λ 7065 He i lines.

  20. Number of Oxygen Nitrogen Method H ii Regions Regression Regression σ σ 3 He i lines a ,b 45 0.2451 ± 0.0018 + 21 ± 21(O/H) 0.0048 0.2452 ± 0.0012 + 603 ± 372(N/H) 0.0044 3 He i lines b 89 0.2429 ± 0.0009 + 51 ± 9(O/H) 0.0040 0.2439 ± 0.0008 + 1063 ± 183(N/H) 0.0037 5 He i lines c ,d 7 0.2421 ± 0.0021 + 68 ± 22(O/H) 0.0035 0.2446 ± 0.0016 + 1084 ± 442(N/H) 0.0040 5 He i lines c ,e 7 0.2444 ± 0.0020 + 61 ± 21(O/H) 0.0040 0.2466 ± 0.0016 + 954 ± 411(N/H) 0.0044 a Data are from IT98. b Only collisional and fluorescent enhancements are taken into account. We have adopted T e (He ii ) = T e (O iii ) and ICF (He) = 1. c Collisional and fluorescent enhancements of the He i lines, collisional excitation of hydrogen lines, underlying He i stellar absorption and di ff erences between T e (He ii ) and T e (O iii ) are taken into account. ICF (He) is set to 1. d Calculated with EW a (H8 + He i 3889) = 3.0˚ A, EW a (He i 4471) = 0.4˚ A, EW a (He i 5876) = 0.3 EW a (He i 4471), EW a (He i 6678) = EW a (He i 7065) = 0.1 EW a (He i 4471). e Calculated with EW a (H8 + He i 3889) = 3.0˚ A, EW a (He i 4471) = 0.5˚ A, EW a (He i 5876) = 0.3 EW a (He i 4471), EW a (He i 6678) = EW a (He i 7065) = 0.1 EW a (He i 4471). Y p = 0 . 244 ± 0 . 002

  21. Peimbert, Peinbert, Luridiana (2002) T(HeII)/T(OIII) average temp � Tn e n p dV T 0 = � n e n p dV mean square temp variation � ( T − T 0 ) 2 n e n p dV t 2 = T 2 � n e n p dV 0 pure OIII nebula F IG . 1.ÈThe ratio T e (He II )/ T e (O III ) as a function of T e (O III ) and � 90800 � t 2 temperature Ñuctuations for the case in which all the O is O `` . When O ` � � is present, higher t 2 values are expected, particularly for those objects with T (HeII) = T (OIII) 1 − T (OIII) − 0 . 2 III ) values (see Fig. 2). Typical t 2 values in H II regions are the highest T e (O 2 in the 0.01 È 0.04 range.

  22. Recent Works (cont.) • Olive & Skillman 2004 • 7 HII regions of IT98 • use HeI emission lines to determine T • underlying stellar absorption Y p = 0 . 249 ± 0 . 009 • Fukugita, MK 2006 • 33 HII regions of IT04 • use OIII emission line to determine T • underlying stellar absorption Y p = 0 . 250 ± 0 . 004

  23. Olive, Skillman 2004 η 10 = 6 . 64 +11 . 1 Y p = 0 . 2491 ± 0 . 0091 − 3 . 82 .27 Y p .26 .25 Y .24 .23 IT 98 Our Re � analysis .22 0 .2 .4 .6 .8 1 4 O/H x 10

  24. Helium Abundance in HII region Fukugita,Kawasaki (2006)

  25. Without stellar absorption Fukugita,Kawasaki (2006) Y p = 0 . 234 ± 0 . 004

  26. 95%CL 95%CL 68%CL 68%CL 95%CL 95%CL 68%CL 68%CL w/abs. w/o abs. IT04 w/o abs. w/abs. IT04

  27. New Determination of Y p Use of new computation of HeI emissivity Porter, Bauman, Ferland, MacAdam 2006 • Peimbert, Luridiana & Peimbert 2007 PBFM • 5 HII regions of IT98 • use HeI emission lines to determine T Y p = 0 . 249 ± 0 . 009 • Izotov, Thuan & Stasinska 2007 • 93 HII regions (HeBCD) + 271 HII regions in SDSS DR5 • T(HeII) = (0.95 - 1.0)T(OIII) • underlying stellar absorption Y p = 0 . 2516 ± 0 . 0011

  28. New Emissivity

  29. Izotov, Thuan, Stasinska 2007 BBS PBFM Y p = 0 . 2472 ± 0 . 0012 Y p = 0 . 2516 ± 0 . 0011

  30. Systematic errors • He I emissivity • T(OIII) may be different from T(HeII) • Underlying HeI stellar absorption • Collisional excitation of hydrogen emission lines • HeII and HII regions may not coincident correction factor ICF (He + + He 2+ )

  31. Error Budget IT (2007) Property ∆ Y p He i emissivity � +1.7% T e (He + ) = (0.95 – 1.0) × T e (O iii ) � − 1.0% Underlying He i stellar absorption � +3.0% Collisional excitation of hydrogen emission lines � +1.0% ICF (He + + He 2+ ) � − 1.0%

  32. Yp History WMAP3 prediction

  33. 3. Li7

  34. Li7 • Spite plateau [Spite & Spite (1987)] constant Li7 abundance in warmest metal-poor stars Primordial abundance of Li 7 T <5700K T >5700K Bonifacio, Molaro 1997

  35. 6708Å line LP815-43

Recommend


More recommend