exact su 5 yukawa matrix unification in the general
play

Exact SU ( 5 ) Yukawa matrix unification in the General Flavour - PowerPoint PPT Presentation

Exact SU ( 5 ) Yukawa matrix unification in the General Flavour Violating MSSM Mateusz Iskrzyski , Kamila Kowalska University of Warsaw, National Centre for Nuclear Research based on MI, K. Kowalska, JHEP 1504 (2015) 120 The


  1. Exact SU ( 5 ) Yukawa matrix unification in the General Flavour Violating MSSM Mateusz Iskrzyński ♠ , Kamila Kowalska ♣ ♠ University of Warsaw, ♣ National Centre for Nuclear Research based on MI, K. Kowalska, JHEP 1504 (2015) 120 The project „International PhD Studies in Fundamental Problems of Quantum Gravity and Quantum Field Theory” is realized within the MPD programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund

  2. Storyline 1. SU(5) Yukawa matrix unification 2. Minimal Supersymmetric Standard Model 3. chirally-enhanced SUSY threshold corrections 4. off-diagonal soft terms help → General Flavour Violating MSSM 5. Phenomenology of Yukawa unification in the GFV MSSM: ◮ 2nd + 3rd generation ◮ 1st + 2nd + 3rd generation

  3. Unification - SU(5) model: matter & Higgs sector Georgi, Glashow, 1974 ( 3 , 1 , 1 ⊕ ( 1 , 2 , − 1 3 ) 2 ) = 5 ���� � �� � � �� � Ψ 5 d ∗ l R ( 3 , 2 , 1 ⊕ ( 3 , 1 , − 2 6 ) 3 ) ⊕ ( 1 , 1 , 1 ) = 10 , ���� � �� � � �� � � �� � Ψ 10 q e ∗ u ∗ R R W ∋ Ψ 10 Y de Ψ 5 H 5 + Ψ 10 Y u Ψ 10 H 5

  4. Unification - SU(5) model: matter & Higgs sector Georgi, Glashow, 1974 ( 3 , 1 , 1 ⊕ ( 1 , 2 , − 1 3 ) 2 ) = 5 ���� � �� � � �� � Ψ 5 d ∗ l R ( 3 , 2 , 1 ⊕ ( 3 , 1 , − 2 6 ) 3 ) ⊕ ( 1 , 1 , 1 ) = 10 , ���� � �� � � �� � � �� � Ψ 10 q e ∗ u ∗ R R W ∋ Ψ 10 Y de Ψ 5 H 5 + Ψ 10 Y u Ψ 10 H 5 Y d , MSSM = Y e , MSSM ii ii

  5. Gauge coupling unification Figure : Gauge coupling unification in non-SUSY GUTs on the left vs. SUSY GUTs on the right using the LEP data (1991) arXiv: hep-ph/0012288

  6. Yukawa couplings at the GUT scale Elor, Hall, Pinner, Ruderman, JHEP 1210 (2012) 111, arXiv:1206.5301 2nd generation: Y µ ( M GUT ) ≈ 3 Y s ( M GUT ) 1st generation: Y e ( M GUT ) ≈ 1 / 3 Y d ( M GUT )

  7. Yukawa unification - Solution 1 - modify GUT structure Change the boundary condition at the high scale ◮ additional Higgs fields, e.g. ◮ correction O(1) from higher-dim. operators

  8. Yukawa unification - Solution 2 Manipulate the boundary condition between SM and MSSM - play with threshold corrections ◮ Diaz-Cruz, Murayama, Pierce, Phys.Rev.D 65:075011, 2002 (particular ansatz using A -terms for unification) ◮ Ts. Enkhbat, arXiv:0909.5597 (general diagonal A -terms) ◮ MI, Eur.Phys.J. C75 (2015) 51 (update - new exp results, broader tan β range, weaker impact on flavour observables)

  9. Threshold corrections µ sp - superpartner decoupling scale g full ( µ sp ) = g eff ( µ sp ) + ∆ g ( µ sp )

  10. SUSY threshold corrections to Yukawa couplings A. Crivellin, L. Hofer, J. Rosiek, JHEP 1107 (2011) 017 ii ( Y f ′ v f Y f MSSM = v f Y f SM − Σ f j , ... ) . ii ii

  11. SUSY threshold corrections to Yukawa couplings A. Crivellin, L. Hofer, J. Rosiek, JHEP 1107 (2011) 017 v f Y f MSSM = v f Y f SM − Σ f ii ( Y f ′ j , ... ) . ii ii m d ( ℓ ) SM − v d Y d ( ℓ ) MSSM = Σ d ( ℓ ) LR + ǫ d ( ℓ ) v u Y d ( ℓ )( 0 ) v 2 + O ( M SUSY ) , i ii ii ✚ i ii Y

  12. SUSY threshold corrections to Yukawa couplings A. Crivellin, L. Hofer, J. Rosiek, JHEP 1107 (2011) 017 ii ( Y f ′ v f Y f MSSM = v f Y f SM − Σ f j , ... ) . ii ii m d ( ℓ ) SM − v d Y d ( ℓ ) MSSM = Σ d ( ℓ ) LR + ǫ d ( ℓ ) v u Y d ( ℓ )( 0 ) v 2 + O ( M SUSY ) , i ii ii ✚ i ii Y m d ( ℓ ) SM − Σ d ( ℓ ) LR Y d ( ℓ ) MSSM i ii ✚ Y = . ii v d ( 1 + tan β · ǫ d ( ℓ ) ) i

  13. Threshold corrections - example diagrams ◮ Diaz-Cruz, Murayama, Pierce, Phys.Rev.D 65:075011, 2002 ◮ Ts. Enkhbat, arXiv:0909.5597 ◮ MI, Eur.Phys.J. C75 (2015) 51 g ∼ α S m ˜ (Σ d ii ) ˜ g ( v d A d ii − v d Y d ii µ tan β )

  14. Threshold corrections - example diagrams ◮ Diaz-Cruz, Murayama, Pierce, Phys.Rev.D 65:075011, 2002 ◮ Ts. Enkhbat, arXiv:0909.5597 ◮ MI, Eur.Phys.J. C75 (2015) 51 A s ∼ m ˜ s required for strange-muon unification ⇒ MSSM vacuum metastable

  15. Threshold corrections - example diagrams g ∼ α S M ˜ (Σ d 22 ) ˜ g v d ( A d 33 − Y b µ tan β )( m 2 q ) 23 ( m 2 d ) 23 ˜ ˜

  16. SU(5) boundary conditions at M GUT d ) ij ≡ ( m 2 ( m 2 l ) ij = ( m 2 dl ) ij ˜ ˜ ( m 2 q ) ij = ( m 2 u ) ij = ( m 2 e ) ij ≡ ( m 2 ue ) ij ˜ ˜ ˜ A d ij = A e ij ≡ A de ij A u ij M 1 = M 2 = M 3 ≡ M 1 / 2 , tan β = v u v d m 2 m 2 H u , H d

  17. Tools

  18. Ranges of input parameters � � m dl m ue ( m 2 ( m 2 ij ≡ dl ) ij , ij ≡ ue ) ij .

  19. 3rd + 2nd family Yukawa unification relevant GFV parameter: m dl 23

  20. 3rd + 2nd family Yukawa unification relevant GFV parameter: m dl 23

  21. 3rd + 2nd family Yukawa unification relevant GFV parameter: m dl 23

  22. 3rd + 2nd + 1st family Yukawa unification relevant GFV parameters: m dl 23 , m dl 13 , m dl 12 , A de 12

  23. 3rd + 2nd + 1st family Yukawa unification relevant GFV parameters: m dl 23 , m dl 13 , m dl 12 , A de 12

  24. 3rd + 2nd + 1st family Yukawa unification relevant GFV parameters: m dl 23 , m dl 13 , m dl 12 , A de 12

  25. Experimental constraints Measurement Mean or range Error [ exp., th.] Ω χ h 2 0 . 1199 [0 . 0027, 10 % ] m h (by CMS) 125 . 7 GeV [0 . 4, 3 . 0] GeV sin 2 θ eff 0 . 23155 [0 . 00012, 0 . 00015] M W 80 . 385 GeV [0 . 015, 0 . 015] GeV � � × 10 4 BR B → X s γ 3 . 43 [0 . 22, 0 . 23] BR ( B s → µ + µ − ) × 10 9 2 . 8 [0 . 7, 0 . 23] BR ( B d → µ + µ − ) × 10 10 3 . 9 [1 . 6, 0 . 2] ∆ M B s × 10 11 1 . 1691 GeV [0 . 0014, 0 . 1580] GeV ∆ M B d × 10 13 3 . 357 GeV [0 . 033, 0 . 340] GeV ∆ M B d / ∆ M B s × 10 2 2 . 87 [0 . 02, 0 . 14] sin ( 2 β ) exp 0 . 682 [0 . 019, 0 . 003] BR ( B u → τν ) × 10 4 1 . 14 [0 . 27, 0 . 07] BR ( K + → π + ν ¯ ν ) × 10 10 1 . 73 [1 . 15 , 0 . 04] | d n | × 10 26 < 2 . 9 e cm [0, 30 % ] ǫ K × 10 3 2 . 228 [0 . 011, 0 . 17]

  26. Experimental constraints - Lepton Flavour Violation

  27. 3rd + 2nd family unification: Dark matter only bino DM

  28. 3rd + 2nd family unification: Flavour observables dashed lines - 3 σ experimental limits

  29. 3rd + 2nd family unification: Flavour observables dashed lines - 3 σ experimental limits

  30. 3rd + 2nd family unification: typical spectra [TeV] ~ g 2.5 ~ g ~ 2 ~ ~ s R g s ~ R ~ d R s R ~ 1.5 d ~ R ~ µ L µ L ~ 1 ~ ~ 0 , χ d ± χ R 2 1 ~ ~ 0 , χ ± ~ χ 2 1 µ ~ ~ 0 , χ ± L χ ~ ~ 2 1 0.5 0 , e ~ ~ χ 0 , e 1 L χ ~ ~ 0 , e 1 L χ 1 L 0

  31. 3rd + 2nd family unification: LHC SUSY searches

  32. 3rd + 2nd family unification: LHC SUSY searches

  33. 3rd + 2nd + 1st family unification: LFV ◮ consistent with quark flavour observables ◮ strongly disfavoured by the Lepton Flavour Violating observables

  34. Open questions ◮ Are there other regions consistent with Yukawa unification? ◮ Could the exclusion of GFV 123 Yukawa unification be avoided? e.g. much higher SUSY masses, an SU ( 5 ) GUT scenario with m ˜ l � = m ˜ d ◮ Could two-loop threshold corrections be any relevant? ◮ Y d = Y e in a GFV 23 -like scenario without vacuum metastability?

  35. Conclusions Non-trivial flavour structure of the MSSM can facilitate the SU(5) Yukawa matrix unification ◮ Unification of the 2nd and 3rd generation phenomenologically allowed (relevant parameter: ( m 2 dl ) 23 ) ◮ Full unification of all thee generations is strongly disfavoured by the limits on LFV (problems with: ( m 2 dl ) 12 , A de 12 / 21 )

  36. Supplementary slides

  37. EW vacuum stability In the down-squark sector, Tree-level formulae for the CCB and UFB bounds in the down-squark sector: √ 2 ) A d ij ≤ m d k [( m 2 q ) ii + ( m 2 d ) jj + m 2 H d + µ 2 ] 1 / 2 , ( v d / k = Max ( i , j ) ˜ ˜ √ 2 ) A d ij ≤ m d k [( m 2 q ) ii + ( m 2 d ) jj + ( m 2 l ) ii + ( m 2 e ) jj ] 1 / 2 ( v d / ˜ ˜ ˜ ˜ J. A. Casas and S. Dimopoulos, [hep-ph/9606237]

  38. EW vacuum stability 20 100000 i=1, j=2, f=d i=2, j=1, f=d 10000 i=1, j=2, f=e 15 i=2, j=1, f=e 1000 i=1, j=2, f=d CCB UFB i=2, j=1, f=d i=1, j=2, f=e f /A ij f /A ij 10 100 i=2, j=1, f=e A ij A ij 10 5 1 0 0.1 EW vacuum CCB (a) and UFB (b) upper bounds (dashed) on the elements A d , e 12 / 21

  39. EW vacuum stability J. h. Park, [arXiv:1011.4939]: metastability bounds are 2-3 orders of magnitude weaker.

  40. Constants values we scanned over ( m pole , m MS ( m b ) , α − 1 em ( M Z ) and α MS ( M Z ) ) ( ¯ ρ , ¯ η , A , t b s λ ) m pole m MS α MS α − 1 ( m b ) ( M Z ) em ( M Z ) t b s 173 . 34 ± 0 . 76 GeV 4 . 18 ± 0 . 03 GeV 0 . 1184 ± 0 . 0007 127 . 944 ± 0 . 015 m MS m MS m MS m MS m pole m pole m pole M pole ( m c ) u d s c e µ τ Z 2.3 MeV 4.8 MeV 95 MeV 1.275 GeV 511 keV 106 MeV 1.777 GeV 91.19 Ge ¯ ρ η ¯ A λ 0 . 159 ± 0 . 045 0 . 363 ± 0 . 049 0 . 802 ± 0 . 020 0 . 22535 ± 0 . 00065 Table : Standard Model parameters (PDG 2014) used in our numerical calculations. The light ( u , d , s ) quark masses are MS -renormalized at 2 GeV.

  41. Yukawa unification

  42. Yukawa unification

  43. Dark matter & Higgs mass

  44. Kaon and B mixing ∆ 12 D = m d 12 in super-CKM basis Misiak, Pokorski, Rosiek, hep-ph/9703442

  45. Ad12 Ad21

Recommend


More recommend