yukawa unification in susy assumptions
play

Yukawa unification in SUSY: assumptions some form of 4-d or x-d SO - PowerPoint PPT Presentation

Why SUSY GUTs imply that the bulk of dark matter is made of axions Howard Baer University of Oklahoma SO (10) motivation Yukawa unification Sparticle mass calculation Dark matter problem mixed axion/axino DM cosmology of


  1. Why SUSY GUTs imply that the bulk of dark matter is made of axions Howard Baer University of Oklahoma ⋆ SO (10) motivation ⋆ Yukawa unification ⋆ Sparticle mass calculation ⋆ Dark matter problem • mixed axion/axino DM ⋆ cosmology of SUSY SO (10) ⋆ SO (10) at LHC – can see with just 0.1 fb − 1 ! 1 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  2. SO (10) : synopsis ⋆ SO (10) is a rank-5 Lie group which contains the SM gauge symmetry. • matter unification in spinorial 16 • The 16 contains all the matter in a single generation of the SM, plus a RHN state ˆ N c : see-saw ν -masses • SO ( n ) (except n = 6 ) are naturally anomaly-free, thus explaining the seemingly fortuitous anomaly cancellation in the SM and in SU (5) . • Explains R -parity conservation • Explains why 2 Higgs doublets in MSSM • Expect t − b − τ Yukawa unification in simplest models 2 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  3. Yukawa unification in SUSY: assumptions • some form of 4-d or x-d SO (10) SUGRA-GUT valid at Q > M GUT • SUGRA breaking via superHiggs mechanism: m ˜ G ∼ 1 TeV and soft SUSY breaking terms ∼ 1 TeV • SO (10) breaks to MSSM or MSSM plus gauge singlets at Q = M GUT either via Higgs mechanism (4-d) or x-d compactification • MSSM (or MSSM plus ˆ N c ) is correct effective theory between M SUSY and M GUT • EWSB broken radiatively due to large m t • we will assume that t − b − τ Yukawa couplings unify at Q = M GUT 3 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  4. lots of previous work! • B. Ananthanarayan, G. Lazarides and Q. Shafi, PRD44 (1991)1613 and PLB300 (1993)245; • V. Barger, M. Berger and P. Ohmann, PRD49 (1994)4908; • M. Carena, M. Olechowski, S. Pokorski and C. Wagner, NPB426 (1994)269; • B. Ananthanarayan, Q. Shafi and X. Wang, PRD50 (1994)5980; • L. Hall, R. Rattazzi and U. Sarid, PRD50 (1994)7048; • R. Rattazzi and U. Sarid, PRD53 (1996)1553; • T. Blazek, M. Carena, S. Raby and C. Wagner, PRD56 (1997)6919; T. Blazek and S. Raby, PLB392 (1997)371 and PRD59 (1999)095002; T. Blazek, S. Raby and K. Tobe, PRD60 (1999)113001 and PRD62 (2000)055001; 4 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  5. more recent work • H. Baer, M. Diaz, J. Ferrandis and X. Tata, PRD61 (2000)111701 • H. Baer, M. Brhlik, M. Diaz, J. Ferrandis, P. Mercadante, P. Quintana and X. Tata, PRD63 (2001)015007; • H. Baer and J. Ferrandis, PRL87 (2001)211803; • T. Blazek, R. Dermisek and S. Raby, PRL88 (2002)111804 and PRD65 (2002)115004; • D. Auto, H. Baer, C. Balazs, A. Belyaev, J. Ferrandis and X. Tata, JHEP0306 (2003)023 • D. Auto, H. Baer, A. Belyaev and T. Krupovnickas, JHEP0410 (2004)066; • R. Dermisek, S. Raby, L. Roszkowski and R. Ruiz de Austri, JHEP0304 (2003)037 and JHEP0509 (2005)029 • H. Baer, S. Kraml, S.Sekmen and H. Summy, arXiv:0801.1831 (2008). 5 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  6. Sparticle mass spectra ⋆ Mass spectra codes ⋆ RGE running: M GUT → M weak • Isajet 7.78 (HB, Paige, Protopopescu, Tata) ∗ ≥ 7.72: Isatools • SuSpect (Djouadi, Kneur, Moultaka) • SoftSUSY (Allanach) • Spheno (Porod) ⋆ Comparison (Belanger, Kraml, Pukhov) ⋆ Website: http://kraml.home.cern.ch/kraml/comparison/ 6 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  7. Yukawa unification requires precision calculation of SUSY spectrum: Hall, Rattazzi, Sarid; Pierce et al. (PBMZ) • need full 2-loop RGE running • full threshold corrections calculated at optimized scale – applies especially to b -quark self-energy g ˜ b i , � W i ˜ – ˜ t j , · · · loops included • off-sets Yukawa coupling RG trajectory • use Isajet/Isasugra spectrum generator 7 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  8. Yukawa unification in MSSM: Isajet and SoftSUSY 1 0.9 f t 0.8 f i 0.7 f b 0.6 f τ 0.5 0.4 0 2 4 6 8 10 12 14 16 10 10 10 10 10 10 10 10 10 Q (GeV) 8 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  9. SO (10) -inspired parameter space: • m 16 , m 10 , M 2 D , m 1 / 2 , A 0 , tan β, sign ( µ ) • Here, M 2 D parametrizes splitting of Higgs soft terms at M GUT : m 2 m 2 10 ∓ 2 M 2 = H u,d D ⋆ The Higgs splitting only (HS) method gives better Yukawa unification than > full D -term splitting (DT) model for µ > 0 and m 16 ∼ 2 TeV 9 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  10. Top-down scan of HS model with µ > 0 Auto, HB, Balazs, Belyaev, Ferrandis, Tata New analysis: HB, Kraml, Sekmen, Summy 10 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  11. Correlation of SSB terms for YU models ⋆ Note correlation amongst parameters: • A 0 ∼ − 2 m 16 • m 10 ∼ 1 . 2 m 16 • tan β ∼ 50 ⋆ Earlier work: Bagger, Feng, Polonsky, Zhang derived A 2 0 = 2 m 2 10 = 4 m 2 16 with m 1 / 2 tiny and Yukawa unified couplings: in context of “radiatively induced inverted scalar mass hierarchy model” – Meant to reconcile naturalness with FCNC suppression by having m ( third gen. scalars ) ≪ m (1 st/ 2 nd ge. scalars ) – Original model needed to be reconciled with EWSB; get hierarchy, but much less than anticipated: HB, Balazs, Mercadante, Tata, Wang (2001) 11 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  12. t − b − τ Yukawa unification in HS model! √ • need m 10 ≃ 2 m 16 1.4 1.2 g 3 • A 0 ≃ − 2 m 16 f t 1.0 Couplings f b • inverted scalar mass hierarchy: Bagger et al. 0.8 g 2 0.6 • split Higgs: m 2 H u < m 2 f τ g 1 H d 0.4 0.2 • Auto, HB, Balazs, Belyaev, Ferrandis, Tata M Z M G 0.0 – m ˜ ℓ (1 , 2) ∼ 10 TeV 15 H d q, ˜ Soft Parameters (TeV) H u e L e R 10 u L,R ,d R – m ˜ t 1 , m A , µ ∼ 1 − 2 TeV τ L τ R 5 b R t L t R – m ˜ g ∼ 300 − 500 GeV 0 A b -5 A t • Blazek, Dermisek, Raby A τ -10 – small µ, m A ∼ 100 − 200 GeV -15 -20 2 4 6 8 10 12 14 16 18 1 10 10 10 10 10 10 10 10 10 Q (GeV) 12 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  13. Neutralino dark matter ⋆ Why R -parity? natural in SO (10) SUSYGUTS if properly broken, or broken via compactification (Mohapatra, Martin, Kawamura, · · · ) ⋆ In thermal equilibrium in early universe ⋆ As universe expands and cools, freeze out ⋆ Number density obtained from Boltzmann eq’n • dn/dt = − 3 Hn − � σv rel � ( n 2 − n 2 0 ) • depends critically on thermally averaged annihilation cross section times velocity ⋆ many thousands of annihilation/co-annihilation diagrams ⋆ several computer codes available • DarkSUSY, Micromegas, IsaReD (part of Isajet) 13 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  14. Problem: reconcile DM with Yukawa unification ⋆ best solution: axion/axino DM instead of neutralino a h 2 ∼ • each � m ˜ Z 1 h 2 : ⇒ warm DM Z 1 → ˜ aγ so Ω ˜ Z 1 Ω e a m e • also thermal component depending on T R : ⇒ CDM • also axion DM via vacuum mis-alignment 14 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  15. Axions ⋆ PQ solution to strong CP problem in QCD ⋆ pseudo-Goldstone boson from f a /N (GeV) 12 11 10 9 10 10 10 10 PQ breaking at scale f a ∼ 10 9 − 10 12 GeV 0 10 2 (vacuum mis-alignment) 2 = 0.110 ± 0.006 WMAP 5: Ω CDM h ⋆ non-thermally produced -1 10 -2 via vacuum mis-alignment as cold DM 10 -3 QCD /f a ∼ 10 − 6 − 10 − 1 eV 10 • m a ∼ Λ 2 Ω a h -4 10 � � 7 / 6 • Ω a h 2 ∼ 1 6 × 10 − 6 eV -5 h 2 10 -5 -4 -3 10 10 10 m a 2 m a (eV) • astro bound: stellar cooling ⇒ m a < 10 − 1 eV • a couples to EM field: a − γ − γ coupling (Sikivie) • axion microwave cavity searches 15 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  16. Axino ˜ a dark matter • axino is spin- 1 2 element of axion supermultiplet ( R -odd; can be LSP) • m ˜ a model dependent: keV → GeV • � f / Z 1 → ˜ aγ N 1 2 = 1 0 a 1 G e V 10 0 10 a production via � • non-thermal ˜ Z 1 decay: f / N 1 1 = 1 0 a -1 G e V 10 τ (s) -2 10 • axinos inherit neutralino number density f / N 1 0 = 1 0 a G e V -3 10 -4 h 2 = 10 m ˜ • Ω NT P Z 1 h 2 : Z 1 Ω e a f / N 9 = 1 0 a a G e ˜ V m e -5 10 50 60 70 80 90 m χ 0 (GeV) ~ 1 16 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  17. Thermally produced axinos ⋆ If T R < f a , then axinos never in thermal equilibrium in early universe ⋆ Can still produce ˜ a thermally via radiation off particles in thermal equilibrium ⋆ Brandenberg-Steffen calculation: � 1 . 108 � � 10 11 GeV � 2 � � � � m ˜ T R h 2 ≃ 5 . 5 g 6 a Ω T P s ln (1) 10 4 GeV a ˜ g s f a /N 0 . 1 GeV 10 10 9 10 f / a N 8 10 = 1 0 12 T R (GeV) G f e / a V N 7 10 = 1 0 11 G f e / NT leptogenesis a N V 6 10 = 1 0 10 G e V 5 10 hot warm cold 4 10 -7 -6 -5 -4 -3 -2 -1 0 10 10 10 10 10 10 10 10 m a ~ (GeV) 17 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

  18. Thermally produced axinos for f a /N = 10 12 GeV 10 10 12 GeV Ω f a /N = 10 TP ~ h a 2 = 0.1 9 10 Ω TP ~ h a 2 = 0.03 8 10 T R (GeV) 7 10 Ω TP ~ h a 2 = 0.01 NT leptogenesis 6 10 Ω TP 5 10 ~ h a 2 = 0.001 hot warm cold 4 10 -7 -6 -5 -4 -3 -2 -1 10 10 10 10 10 10 10 m a ~ (GeV) 18 Howie Baer, UW Pheno 2009 meeting, May 12, 2009

Recommend


More recommend