evaluation of measurement uncertainty associated with the
play

Evaluation of Measurement Uncertainty associated with the Avogadro - PowerPoint PPT Presentation

Evaluation of Measurement Uncertainty associated with the Avogadro Constant Dr. Rdiger Kessel Agenda Importance of the Avogadro Number The international approach in 2002 The Avogadro Number The task: establishing the final


  1. Evaluation of Measurement Uncertainty associated with the Avogadro Constant Dr. Rüdiger Kessel

  2. Agenda • Importance of the Avogadro Number • The international approach in 2002 • The Avogadro Number • The task: establishing the final value – Sub-problem: molar volume – Removing inconsistencies – Treating correlations – Uncertainty budget • Discussion of the final approach

  3. Importance of the Avogadro Number • Why do we need it? • Why do we need to measure it? • How do we measure it ? – Molar mass – Volume – Mass – Lattice parameter • Why is silicon used?

  4. The international approach in 2002 INRIM (IMGC) EU/IRMM Lattice parameter, Molar Mass Density PTB NMI-A Density Density NMIJ Density, Lattice parameter

  5. The Avogadro Number ⋅ n M M V = = ⋅ Si Si N A 3 m a m ⋅ 3 a V n (Si: n = 8 )

  6. Mass Spectrometer at IRMM

  7. Establishing the final value • Results and uncertainty budget have been provided for all measurements of: – Density – Molar mass – Lattice parameter • Two main questions: – What is the measurement function? – How to combine different data?

  8. Sub-problem: molar volume 28.08554 M = Si V ρ m 28.08547 Si Molar mass in g·mol -1 28.0854 Use regression? 28.08533 28.08526 2329.024 2329.03 2329.036 2329.042 2329.048 Density ρ in kg·m -3 (Data intentionally modified)

  9. Why not use regression? • Regression leads to a complicated model equation. • The zero point need to be included. • With the zero point the regression degenerates. • Check of pairwise consistency is difficult.

  10. Use of the weighted mean value M = + δ , Si i V V Individual molar volume ρ m , i m , i Si , i + ⋅ ⋅ + ⋅ ⋅ M r K M r K M = 28 29 / 28 , 29 / 28 29 , 30 / 28 , 30 / 28 30 Si i Si i i Si M + ⋅ + ⋅ , Si i 1 r K r K 29 / 28 , i 29 / 28 30 / 28 , i 30 / 28 1 Individual molar mass ∑ V , m i 2 u ( V ) = i , m i V Weighted mean for the overall molar volume m 1 ∑ 2 ( ) u V i m , i ε = − V V Difference between individual and overall molar volume i m , i m

  11. Removing inconsistencies Before… After… Difference of the molar volume in mol·m -3 Difference of the molar volume in mol·m -3 8·10 -12 4·10 -12 2·10 -12 4·10 -12 0 0 -2·10 -12 -4·10 -12 -4·10 -12 -8·10 -12 ε 1.1 ε 1.2 ε 1.3 ε 1.4 ε 1.1 ε 1.2 ε 1.3 ε 1.4

  12. Overall data consistency Difference of the molar volume in mol·m -3 1.9·10 -11 0 -1.9·10 -11 -3.8·10 -11 ε 01 ε 02 ε 03 ε 04 ε 05 ε 06 ε 07 ε 08 ε 09 ε 10 ε 11 ε 12 ε 13 ε 14 ε 15 ε 16 ε 17 ε 18 ε 19

  13. Treating correlations • Correlations are important because we average over large number of molar volume values • Correlations arise because the laboratories use common quantities for different results (e.g. calibration factor for molar mass) • Results from different laboratories are considered to be independent

  14. Uncertainty budget Quantity Value Standard Sensitivity Uncertainty Index Uncertainty Coefficient Contribution 543.1020880·10 -12 m 16.0·10 -18 m -3.3·10 33 -53·10 15 mol -1 a 0 21.0 % 37.0·10 -6 mol/mol 890·10 18 33·10 15 mol -1 K 29/28Si 1.0013060 mol/mol 8.1 % 58.0·10 -6 mol/mol 1.3·10 21 73·10 15 mol -1 K 30/28Si 0.9963150 mol/mol 39.3 % 220·10 -9 g/mol 20·10 21 4.4·10 15 mol -1 M 28Si 27.976926490 g/mol 0.1 % 1.00·10 -6 12·10 21 12.0·10 15 mol -1 r 30 0.03360280 1.2 % δ V m 5.60·10 -12 2.2·10 27 12.2·10 15 mol -1 0.0 1.2 % ρ 2329.035464 kg/m 3 900·10 -6 kg/m 3 -70·10 18 -62.6·10 15 mol -1 29.1 % 6.0221353·10 23 mol -1 100·10 15 mol -1 N A • 50% of the uncertainty arises from molar mass measurements • 20% from lattice parameter measurements • 30% from density measurements

  15. Discussion of the final approach • clear measurement M = + δ Si , i V V ρ m , i m , i function Si , i • every lab is contributing 1 ∑ V , • weighting based on m i 2 u ( V ) = i , m i V uncertainties m 1 ∑ 2 ( ) u V • check for consistency i m , i ⋅ 8 V = m N A 3 a

  16. Acknowledgement I would like to thank Prof. Paul De Bievre (IRMM, retired) for involving me in the project. I would like to thank Dr. Peter Becker (PTB) for providing me with detailed data and some photos.

  17. Thank you for you attention!

Recommend


More recommend