european symposia on algorithms 16 outline
play

European Symposia on Algorithms16 Outline Problem Formulation - PowerPoint PPT Presentation

A Note On Spectral Clustering Pavel Kolev and Kurt Mehlhorn European Symposia on Algorithms16 Outline Problem Formulation Algorithmic Tools Our Contribution Structural Result Algorithmic Result Proof Overview Summary


  1. A Note On Spectral Clustering Pavel Kolev and Kurt Mehlhorn European Symposia on Algorithms‘16

  2. Outline  Problem Formulation – Algorithmic Tools  Our Contribution – Structural Result – Algorithmic Result  Proof Overview  Summary

  3. k-way Partitioning  Def. A cluster is a subset 𝑇 ⊆ 𝑊 with small conductance |𝐹 𝑇, 𝑇 | 𝜈(𝑇) , where the volume 𝜈 𝑇 = 𝑤∈𝑇 deg(𝑤) . 𝜚 𝑇 =

  4. k-way Partitioning  Def. A cluster is a subset 𝑇 ⊆ 𝑊 with small conductance |𝐹 𝑇, 𝑇 | 𝜈(𝑇) , where the volume 𝜈 𝑇 = 𝑤∈𝑇 deg(𝑤) . 𝜚 𝑇 =  Def. The order 𝑙 conductance constant 𝜍(𝑙) = partition (𝑄 1 ,…,𝑄 𝑙 ) max min 𝑗∈[1:𝑙] 𝜚 𝑄 𝑗

  5. k-way Partitioning  Def. A cluster is a subset 𝑇 ⊆ 𝑊 with small conductance |𝐹 𝑇, 𝑇 | 𝜈(𝑇) , where the volume 𝜈 𝑇 = 𝑤∈𝑇 deg(𝑤) . 𝜚 𝑇 =  Def. The order 𝑙 conductance constant 𝜍(𝑙) = partition (𝑄 1 ,…,𝑄 𝑙 ) max min 𝑗∈[1:𝑙] 𝜚 𝑄 𝑗  Goal: Find an approximate 𝑙 -way partition w.r.t 𝜍(𝑙) .

  6. k-way Partitioning  Def. A cluster is a subset 𝑇 ⊆ 𝑊 with small conductance |𝐹 𝑇, 𝑇 | 𝜈(𝑇) , where the volume 𝜈 𝑇 = 𝑤∈𝑇 deg(𝑤) . 𝜚 𝑇 =  Def. The order 𝑙 conductance constant 𝜍(𝑙) = partition (𝑄 1 ,…,𝑄 𝑙 ) max min 𝑗∈[1:𝑙] 𝜚 𝑄 𝑗  Goal: Find an approximate 𝑙 -way partition w.r.t 𝜍(𝑙) .

  7. Standard Spectral Clustering Paradigm 𝐻 = 𝑊, 𝐹 , 3 ≤ 𝑙 ≪ 𝑜 and 𝜗 ∈ (0,1) . Input: Output: An approximate 𝑙 -way partition of 𝑊 . Andrew Ng et al [ NIPS’ 02]: 1. Computes an approximate Spectral Embedding 𝐺: 𝑊 ↦ 𝑆 𝑙 using the Power Method. 2) Run a 𝑙 -means clustering algorithm to compute an approximate 𝑙 -way partition of 𝐺 𝑤 𝑤∈𝑊 .

  8. Outline  Problem Formulation – Algorithmic Tools  Our Contribution – Structural Result – Algorithmic Result  Proof Overview  Summary

  9. Spectral Graph Theory  The normalized Laplacian matrix ℒ has eigenvalues 0 = 𝜇 1 ≤ ⋯ ≤ 𝜇 𝑙 ≤ 𝜇 𝑙+1 ≤ ⋯ ≤ 𝜇 𝑜 ≤ 2 .  Fact. A graph has exactly 𝑙 connected component iff 0 = 𝜇 𝑙 < 𝜇 𝑙+1 .

  10. Spectral Graph Theory  The normalized Laplacian matrix ℒ has eigenvalues 0 = 𝜇 1 ≤ ⋯ ≤ 𝜇 𝑙 ≤ 𝜇 𝑙+1 ≤ ⋯ ≤ 𝜇 𝑜 ≤ 2 .  Fact. A graph has exactly 𝑙 connected component iff 0 = 𝜇 𝑙 < 𝜇 𝑙+1 .  Trevisan et al. [STOC’12, SODA’14] proved a robust version 𝜇 𝑙 /2 ≤ 𝜍 𝑙 ≤ 𝑃 𝑙 3 𝜇 𝑙 . ( 𝜍 𝑙 is NP-hard and 𝜇 𝑙 is in P ) → approx . scheme!

  11. Exact Spectral Embedding  𝑉 𝑙 = 𝑤 1 , 𝑤 2 , … , 𝑤 𝑙 ∈ 𝑆 𝑊×𝑙 - the bottom 𝑙 eigenvectors of ℒ 𝐺: 𝑊 ↦ 𝑆 𝑙  Normalized Spectral Embedding: 1 𝐺 𝑤 = deg(𝑤) 𝑉 𝑙 𝑤, : , for every 𝑤 ∈ 𝑊.

  12. Exact Spectral Embedding  𝑉 𝑙 = 𝑤 1 , 𝑤 2 , … , 𝑤 𝑙 ∈ 𝑆 𝑊×𝑙 - the bottom 𝑙 eigenvectors of ℒ 𝐺: 𝑊 ↦ 𝑆 𝑙  Normalized Spectral Embedding: 1 𝐺 𝑤 = deg(𝑤) 𝑉 𝑙 𝑤, : , for every 𝑤 ∈ 𝑊.

  13. Approximate Spectral Embedding 𝑉 𝑙 ∈ 𝑆 𝑊×𝑙 approximation of the bottom 𝑙 eigenvectors of ℒ  𝐺: 𝑊 ↦ 𝑆 𝑙 Power Method  Approximate Normalized Spectral Embedding: 1 deg(𝑤) 𝐺 𝑤 = 𝑉 𝑙 𝑤, : , for every 𝑤 ∈ 𝑊.

  14. Approximate Spectral Embedding 𝑉 𝑙 ∈ 𝑆 𝑊×𝑙 approximation of the bottom 𝑙 eigenvectors of ℒ  𝐺: 𝑊 ↦ 𝑆 𝑙 Power Method  Approximate Normalized Spectral Embedding: 𝒴 𝐹 = deg 𝑤 many copies of 𝐺 𝑤 𝑤 ∈ 𝑊} . Point Sets: 𝒴 𝑊 = 𝐺 𝑤 𝑤 ∈ 𝑊} .

  15. 𝑙 -means Clustering 𝒴 = 𝑞 1 , … , 𝑞 𝑜 with 𝑞 𝑗 ∈ 𝑆 𝑙 . Input: Output: 𝑙 -way partition of 𝒴 such that 𝑙 2 , ⋆ , … , 𝐵 𝑙 ⋆ 𝐵 1 = argmin 𝑞 − 𝑑 𝑗 partition 𝑌 1 ,…,𝑌 𝑙 of 𝒴 𝑗=1 𝑞∈𝑌 𝑗 where 𝑑 𝑗 is the center of 𝑌 𝑗 .

  16. 𝑙 -means Clustering 𝒴 = 𝑞 1 , … , 𝑞 𝑜 with 𝑞 𝑗 ∈ 𝑆 𝑙 . Input: Output: 𝑙 -way partition of 𝒴 such that 𝑙 2 , ⋆ , … , 𝐵 𝑙 ⋆ 𝐵 1 = argmin 𝑞 − 𝑑 𝑗 partition 𝑌 1 ,…,𝑌 𝑙 of 𝒴 𝑗=1 𝑞∈𝑌 𝑗 where 𝑑 𝑗 is the center of 𝑌 𝑗 . Def. The optimal 𝑙 -means cost is ⋆ . ⋆ , … , 𝐵 𝑙 Δ 𝑙 𝒴 = cost 𝐵 1

  17. Outline  Problem Formulation – Algorithmic Tools  Our Contribution – Structural Result – Algorithmic Result  Proof Overview  Summary

  18. Structural Result  Peng et al. [COLT’15] Υ ≔ 𝜇 𝑙+1 /𝜍 𝑙 ≥ Ω(𝑙 3 ) 𝜍(𝑙) = max 𝑗∈[1:𝑙] 𝜚 𝑄 𝑗  Our Result 𝑙 𝜍 avr (𝑙) = 1 Ψ ≔ 𝜇 𝑙+1 /𝜍 avr (𝑙) ≥ Ω(𝑙 3 ) 𝑙 𝜚(𝑄 𝑗 ) 𝑗=1 - (𝑄 1 , … , 𝑄 𝑙 ) is an optimal k-way partition of 𝐻 w.r.t. 𝜍(𝑙) .

  19. Structural Result  Peng et al. [COLT’15] Υ ≔ 𝜇 𝑙+1 /𝜍 𝑙 ≥ Ω(𝑙 3 ) 𝜍(𝑙) = max 𝑗∈[1:𝑙] 𝜚 𝑄 𝑗  Our Result 𝑙 𝜍 avr (𝑙) = 1 Ψ ≔ 𝜇 𝑙+1 /𝜍 avr (𝑙) ≥ Ω(𝑙 3 ) 𝑙 𝜚(𝑄 𝑗 ) 𝑗=1 - (𝑄 1 , … , 𝑄 𝑙 ) is an optimal k-way partition of 𝐻 w.r.t. 𝜍(𝑙) . - cost 𝐵 1 , … , 𝐵 𝑙 ≤ 𝛿 ⋅ Δ 𝑙 𝒴 𝐹 for 𝛿 ≥ 1 .

  20. Structural Result 𝐵 𝑗 Δ𝑄  Peng et al. [COLT’15] 𝑗 If Υ ≔ 𝜇 𝑙+1 /𝜍 𝑙 ≥ Ω(𝑙 3 ) then 𝜍(𝑙) = max 𝑗∈[1:𝑙] 𝜚 𝑄 𝑗  𝜈 𝐵 𝑗 Δ𝑄 𝑗 ≤ ( 𝛿 /Υ) ⋅ 𝜈 𝑄 𝑗  Our Result 𝑙 𝜍 avr (𝑙) = 1 If Ψ ≔ 𝜇 𝑙+1 /𝜍 avr (𝑙) ≥ Ω(𝑙 3 ) then 𝑙 𝜚(𝑄 𝑗 )  𝜈 𝐵 𝑗 Δ𝑄 𝑗 ≤ ( 𝛿 /Ψ𝒍) ⋅ 𝜈 𝑄 𝑗=1 𝑗 - (𝑄 1 , … , 𝑄 𝑙 ) is an optimal k-way partition of 𝐻 w.r.t. 𝜍(𝑙) . - cost 𝐵 1 , … , 𝐵 𝑙 ≤ 𝛿 ⋅ Δ 𝑙 𝒴 𝐹 for 𝛿 ≥ 1 .

  21. Structural Result  Peng et al. [COLT’15] If Υ ≔ 𝜇 𝑙+1 /𝜍 𝑙 ≥ Ω(𝑙 3 ) then 𝜍(𝑙) = max 𝑗∈[1:𝑙] 𝜚 𝑄 𝑗  𝜈 𝐵 𝑗 Δ𝑄 𝑗 ≤ ( 𝛿 /Υ) ⋅ 𝜈 𝑄 𝑗  𝜚 𝐵 𝑗 ≤ 1 + 𝛿 /Υ ⋅ 𝜚 𝑄 𝑗 + 𝛿 /Υ  Our Result 𝑙 𝜍 avr (𝑙) = 1 If Ψ ≔ 𝜇 𝑙+1 /𝜍 avr (𝑙) ≥ Ω(𝑙 3 ) then 𝑙 𝜚(𝑄 𝑗 )  𝜈 𝐵 𝑗 Δ𝑄 𝑗 ≤ ( 𝛿 /Ψ𝒍) ⋅ 𝜈 𝑄 𝑗=1 𝑗  𝜚 𝐵 𝑗 ≤ 1 + 𝛿 /Ψ𝒍 ⋅ 𝜚 𝑄 𝑗 + 𝛿 /Ψ𝒍 - (𝑄 1 , … , 𝑄 𝑙 ) is an optimal k-way partition of 𝐻 w.r.t. 𝜍(𝑙) . - cost 𝐵 1 , … , 𝐵 𝑙 ≤ 𝛿 ⋅ Δ 𝑙 𝒴 𝐹 for 𝛿 ≥ 1 .

  22. Structural Result  Peng et al. [COLT’15] If Υ ≔ 𝜇 𝑙+1 /𝜍 𝑙 ≥ Ω(𝑙 3 ) then 𝜍(𝑙) = max 𝑗∈[1:𝑙] 𝜚 𝑄 𝑗  𝜈 𝐵 𝑗 Δ𝑄 𝑗 ≤ ( 𝛿 /Υ) ⋅ 𝜈 𝑄 𝑗  𝜚 𝐵 𝑗 ≤ 1 + 𝛿 /Υ ⋅ 𝜚 𝑄 𝑗 + 𝛿 /Υ  Our Result 𝑙 𝜍 avr (𝑙) = 1 If Ψ ≔ 𝜇 𝑙+1 /𝜍 avr (𝑙) ≥ Ω(𝑙 3 ) then 𝑙 𝜚(𝑄 𝑗 )  𝜈 𝐵 𝑗 Δ𝑄 𝑗 ≤ ( 𝛿 /Ψ𝒍) ⋅ 𝜈 𝑄 𝑗=1 𝑗  𝜚 𝐵 𝑗 ≤ 1 + 𝛿 /Ψ𝒍 ⋅ 𝜚 𝑄 𝑗 + 𝛿 /Ψ𝒍 How to find such 𝑙 -way partition 𝐵 1 , … , 𝐵 𝑙 ?

  23. Outline  Problem Formulation – Algorithmic Tools  Our Contribution – Structural Result – Algorithmic Result  Proof Overview  Summary

  24. Algorithmic Result  Peng et al. [COLT’15] Concentration Υ ≔ 𝜇 𝑙+1 /𝜍 𝑙 ≥ Ω(𝒍 𝟔 ) more restrictive by Heat Kernel and Ω 𝑙 2 -factor Local Sensitive Hashing

  25. Algorithmic Result  Peng et al. [COLT’15] Concentration Υ ≔ 𝜇 𝑙+1 /𝜍 𝑙 ≥ Ω(𝒍 𝟔 ) more restrictive by Heat Kernel and Ω 𝑙 2 -factor Local Sensitive Hashing  Our Result Approx. Spectral Embedding Ψ ≔ 𝜇 𝑙+1 /𝜍 avr (𝑙) ≥ Ω(𝑙 3 ) and k-means Clustering and ∆ 𝑙 𝒴 𝑊 ≥ 𝑜 −𝑃(1)

  26. Algorithmic Result  Peng et al. [COLT’15] Concentration Υ ≔ 𝜇 𝑙+1 /𝜍 𝑙 ≥ Ω(𝒍 𝟔 ) more restrictive by Heat Kernel and Ω 𝑙 2 -factor Local Sensitive Hashing  Our Result Approx. Spectral Embedding Ψ ≔ 𝜇 𝑙+1 /𝜍 avr (𝑙) ≥ Ω(𝑙 3 ) and k-means Clustering and ∆ 𝑙 𝒴 𝑊 ≥ 𝑜 −𝑃(1) This is the 1 st rigorous algorithmic analysis of the Standard Spectral Clustering Paradigm!

  27. Algorithmic Result  Peng et al. [COLT’15] Concentration Υ ≔ 𝜇 𝑙+1 /𝜍 𝑙 ≥ Ω(𝒍 𝟔 ) constant = 10 5 Heat Kernel and Local Sensitive Hashing  Our Result Approx. Spectral Embedding Ψ ≔ 𝜇 𝑙+1 /𝜍 avr (𝑙) ≥ Ω(𝑙 3 ) and k-means Clustering and ∆ 𝑙 𝒴 𝑊 ≥ 𝑜 −𝑃(1) 𝜗 0 = 6/10 7 is Ostrovsky et al’s [FOCS’13] constant = 10 7 /𝜗 0 k-means alg. constant (is not optimized!)

Recommend


More recommend