estimation in the fixed effects ordered logit model
play

Estimation in the Fixed Effects Ordered Logit Model Chris Muris - PowerPoint PPT Presentation

Estimation in the Fixed Effects Ordered Logit Model Chris Muris (SFU) Outline Introduction Model and main result Cut points Estimation Simulations and illustration Conclusion Setting 1. Fixed- T panel. A random sample { ( y it , X it ) , i


  1. Estimation in the Fixed Effects Ordered Logit Model Chris Muris (SFU)

  2. Outline Introduction Model and main result Cut points Estimation Simulations and illustration Conclusion

  3. Setting 1. Fixed- T panel. A random sample { ( y it , X it ) , i = 1 , · · · , N , t = 1 , · · · , T } , with N → ∞ 2. Ordered logit . y it is an ordered response in { 1 , 2 , · · · , J } , y ∗ = α i + X it β + u it , it  y ∗ 1 if it < γ 1 ,    if γ 1 ≤ y ∗ 2 it < γ 2 ,   y it = . . . . . .     if γ J − 1 ≤ y ∗ J it ,  for cut points γ j . Errors are logistic. 3. Fixed effects. Joint distribution of α i and X i is unrestricted.

  4. Contribution This paper: • Estimation of differences of the cut points • More efficient estimation of the regression coefficient Why does this matter? • Cut points: bounds on partial effects • Model is heavily used (BSW, 2015: > 150 cites)

  5. Application (1): Allen and Arnutt (WP, 2013) Effect of “Teach First” program on educational outcomes. • y it : letter grade student i for subject-year t • D it ∈ { 0 , 1 } : school enrolled in “Teach First”? • Latent variable model: y ∗ it = α i + β 1 D it + X it β 2 + u it , where • α i is unobserved student ability • X it are controls

  6. Application (1): Allen and Arnutt (WP, 2013) All three model ingredients are present 1. Fixed- T : number of subjects per student is much smaller than the number of students 2. Ordered: letter grade is an ordered outcome 3. Fixed effects: schools with results in the bottom 30% are eligible

  7. Application (2): Frijters et al. (AER, 2004): Effect of income on life satisfaction • y it : life satisfaction on scale { 0 , · · · , 10 } • “completely dissatisfied” to “completely satisfied”. • X it : real household income • Latent variable model: y ∗ it = α i + β 1 X it + Z it β 2 + u it • α i : unobserved student ability • X it may correlated with α i • Z it : other controls.

  8. More applications • Health • Khanam et al. (JHE, 2014): income and child health • Carman (AER, 2013): intergenerational transfers and health • Frijters et al. (JHE, 2005): income on health • Labor • Hamermesh (JHR, 2001): earnings shocks and job satisfaction • Das and van Soest (JEBO, 1999): expectations about future income

  9. More applications (2) • Happiness • Frijters et al. (AER, 2004): income and life satisfaction • Blanchflower and Oswald (JPE, 2004): trends in US life satisfaction • Credit / debt ratings • Amato, Furfine (JBF 2003): credit ratings are not procyclical • Afonso et al. (IJOFE, 2013): determinants of sovereign debt ratings • Education • Allen and Alnutt (2013): effect of “Teach First” program on student achievement

  10. Literature • Chamberlain (RES, 1980) : binary choice and unordered choice • Das and van Soest (JEBO, 1999): all cutoffs • Ferrer-i-Carbonell and Frijters (EJ, 2004): individual-specific cutoffs • Baetschmann et al. (JRSS-A, 2015): small-sample improvements None of these papers estimate the cut point differences.

  11. Outline Introduction Model and main result Cut points Estimation Simulations and illustration Conclusion

  12. Model • Random sample of size n → ∞ , T fixed: { ( y i 1 , · · · , y iT , X i 1 , · · · , X iT ) , i = 1 , · · · , n } • y it is an ordered outcome in { 1 , · · · , J } • X it = ( X it , 1 , · · · , X it , K ) are covariates • Unobserved heterogeneity in the latent variable: y ∗ it = α i + X it β + u it • Serially independent, exogenous logistic errors u i 1 , · · · , u iT | ( X i 1 , · · · , X iT ) , α i ∼ iid LOG (0 , 1) • Link between latent and observed by cut points  y ∗ 1 if it < γ 1    if γ 1 ≤ y ∗ 2 it < γ 2   y it = . . . . . .     if γ J − 1 ≤ y ∗ J it . 

  13. Incidental parameters For each category j , P ( y it = j | X it , α i ) = Λ ( γ j − α i − X it β ) − Λ ( γ j − 1 − α i − X it β ) , where Λ = exp ( x ) / (1 + exp ( x )). Likelihood is n T J [Λ ( γ j − α i − X it β ) − Λ ( γ j − 1 − α i − X it β )] 1 { y it = j } . � � � t =1 i =1 j =1 • Fixed T : maximum likelihood estimator (MLE) is inconsistent

  14. Incidental parameters (logit) ˆ β ML : maximum likelihood estimator for T = J = 2 • Inconsistent (Abrevaya, 1997) p • ˆ β ML → 2 β as n → ∞ • Solution (Chamberlain, 1980) • y i 1 + y i 2 is a sufficient statistic for α i • conditional MLE (CMLE) with 1 P ( y i = (1 , 0) | y i 1 + y i 2 = 1 , X i , α i ) = 1 + exp (( X i 2 − X i 1 ) β ) is consistent • Drawback: CMLE uses only switchers

  15. Incidental parameters (Ordered logit) • Solution for incidental parameters problem is model-specific • No sufficient statistic (yet?) for ordered logit • No exponential form: P ( y it = j | X it , α i ) = Λ ( γ j − α i − X it β ) − Λ ( γ j − 1 − α i − X it β )

  16. Incidental parameters (Takeaway) • Unobserved heterogeneity can cause inconsistency • Solution exists for the case of binary logit • Solution uses only switchers • Does not extend to ordered logit model

  17. Ordered choice • Consider ordered choice with y it ∈ { 1 , · · · , J } • Dichotomization : • Pick some j ∈ { 1 , · · · , J − 1 } and define the binary variable � if y it ≤ j , 1 d it , j = 0 otherwise. • Apply Chamberlain’s CMLE to y it , j • Consistent but inefficient : • Information is lost by discarding more precise measurement y it • Winkelmann and Winkelmann (1998): • { 0 , · · · , 10 } collapsed to { 0 , 1 } by cutting at 7 • Out of 10000 observations, only 2523 are switchers

  18. Non-switcher: not informative

  19. Switcher: informative

  20. Das and van Soest: multiple cutoffs

  21. Time-invariant transformations do not catch flat patterns

  22. Time-varying transformations catch flat patterns

  23. There are ( J − 1) T ≥ ( J − 1) time-varying transformations

  24. Main result (notation) • C utoff categories π t ≤ J − 1 • π = ( π 1 , · · · , π T ) is a transformation • d it ,π = 1 { y it ≤ π t } is the π − transformed dependent variable • time series for unit i : d i ,π ∈ { 0 , 1 } T • ¯ d i ,π = � t d it ,π : number of times below cutoff d is the set of all binary T − vectors f with sum ¯ • F ¯ d

  25. Main result Theorem If the random vector ( y i , X i ) follows the fixed effects ordered logit model, then for any transformation π , the conditional probability distribution of the π -transformed dependent variable d i ,π is given by d i ,π = d | ¯ d i ,π = ¯ � � p i ,π ( d | β, γ ) ≡ P d , X i , α i (1) 1 �� (2) = � �� � d exp t ( f t − d t ) γ π ( t ) − X it β f ∈ F ¯ for any d ∈ { 0 , 1 } T .

  26. Main result (remarks) 1. Conditional probability does not depend on α i 2. Sufficient statistic exists for ( J − 1) T transformations of y i 3. Existing approaches use at most ( J − 1) of those transformations

  27. Main result ( T = 2) Evaluate the conditional probability for d = (1 , 0) • For any time-invariant transformation: 1 1 + exp {− ( X i 2 − X i 1 ) β } • For time-varying transformation π = ( j , k ), j � = k 1 1 + exp { ( γ k − γ j ) − ( X i 2 − X i 1 ) β } Identification of γ k − γ j . Intuition: subpopulation with X i 2 = X i 1

  28. Outline Introduction Model and main result Cut points Estimation Simulations and illustration Conclusion

  29. Cut points: binary • Panel data binary choice ( J = 2) : • no interpretation of the magnitude of β • evaluation of partial effects requires value/distribution α i • Existing estimators for ordered choice inherit this problem by eliminating thresholds • Marginal effect of a ceteris paribus change in regressor m with coefficient β m : ∂ P ( y it ≤ j | X it , α i ) = β m Λ ( α i + X it β − γ j ) [1 − Λ ( α i + X it β − γ j )] ∂ X it , m

  30. Change in y it for unit change in X it , m ?

  31. If y ∗ it = α i + X it β + u it < − β m , then y it is unchanged.

  32. No marginal effects without info on α i or α i | X it .

  33. Bounds (notation) • Consider a ceteris paribus change in X it of ∆ x • The counterfactual latent dependent variable is y ∗ it = y ∗ ˜ it + (∆ x ) β ; • ˜ y it : the counterfactual ordered outcome.

  34. Bounds Conditional probability for the observed counterfactual outcome:  1 if (∆ x ) β > γ j − γ j − 1 ,    0 if (∆ x ) β < 0 , P ( ˜ y it > j | y it = j , X it ) = F v ( γ j − X it β ) − F v ( γ j − ( X it +∆ x ) β )  else   F v ( γ j − X it β ) − F v ( γ j − 1 − X it β ) Paper presents a more general result along the same lines. Note: intermediate category.

  35. Bounds (2) Using the first component: • Minimum required change in X itm to move everybody with y it = j up: m ≡ γ j − γ j − 1 δ j β m • Let ∆ x m be the ceteris paribus change in X it , m , then ∆ x m > δ j m ⇒ P ( ˜ y it > j | y it = j , X it ) = 1

  36. Outline Introduction Model and main result Cut points Estimation Simulations and illustration Conclusion

Recommend


More recommend