practical note on specification of discrete choice model
play

Practical note on specification of discrete choice model Toshiyuki - PowerPoint PPT Presentation

Practical note on specification of discrete choice model Toshiyuki Yamamoto Nagoya University, Japan 1 Contents Comparison between binary logit model and binary probit model Comparison between multinomial logit model and nested logit


  1. Practical note on specification of discrete choice model Toshiyuki Yamamoto Nagoya University, Japan 1

  2. Contents • Comparison between binary logit model and binary probit model • Comparison between multinomial logit model and nested logit model • Comparison between nested logit model and mixed logit model 2

  3. Comparison between binary logit model and binary probit model 3

  4. Random utility models • Random utility U jn = V jn + ε jn V jn : deterministic part of utility ε jn : stochastic part of utility • Conventional linear utility function V jn = β X jn X jn : vector of explanatory variables β : vector of coefficients 4

  5. Binary choice models When the choice set contains only two alternatives • Probability for individual n to choose alternative i P in = Prob( U in > U jn ) = Prob( V in + ε in > V jn + ε jn ) = Prob( ε jn − ε in < V in − V jn ) • If ε jn and ε in follow normal distribution, ε jn − ε in also follows normal distribution -> Binary probit model • If ε jn and ε in follow iid Gumbel distribution, ε jn − ε in follows logistic distribution -> Binary logit model 5

  6. Gumbel distribution: G( η , µ ) • Probability density function [ ] ( ) { ( ) } { ( ) } ε = µ − µ ε − η − − µ ε − η f exp exp exp – Mode = η , Mean = η + r/ µ , variance = π 2 /6 µ 2 , where r ≈ 0.577 (Euler’s constant) • Cumulative density function { } ( ) ( )   F ε = − − µ ε − η exp exp   6

  7. Binary logit model • If ε in and ε jn follow G( η i , µ ) and G( η j , µ ) respectively, ε jn − ε in = ε n follows logistic distribution as below 1 ( ) F ε = { } ( ) n + µ η − η − ε 1 exp j i n • Assuming η i = η j = 0, probability to choose i is ( ) ( ) = ε − ε < − = − P Pr V V F V V in jn in in jn in jn ( ) µ exp V 1 = = in { } ( ) ( ) ( ) µ + µ + − µ − exp V exp V 1 exp V V in jn in jn 7

  8. Normal distribution: N(m, σ 2 ) • Probability density function   ε − 2   1 1 m ( ) ε = −     f exp σ πσ     2   2 – Mode = Mean = m, variance = σ 2 • Cumulative density function = ∫ ε ( ) ( ) ε F f e de =−∞ e 8

  9. Binary probit model • ε jn − ε in = ε n is assumed to follow N(0, σ 2 ) where m = 0 ( ) = ε − ε < − P Pr V V in jn in in jn   ε 2   − 1 1 ∫ V V = − ε in jn   n   exp d σ πσ n   ε =−∞   2 2   n −   V V = Φ in jn  σ   If V( ε in ) = V( ε jn ) and COV( ε in , ε jn ) = 0 (i.i.d.), V( ε in ) = V( ε jn ) = σ 2 /2 9

  10. Identifiability of parameters • Binary logit model: ( ) ( ) µ µβ exp V exp X = = in in P ( ) ( ) ( ) ( ) µ + µ µβ + µβ in exp V exp V exp X exp X in jn in jn • Binary probit model: − β − β     β β   V V X X = Φ = Φ = Φ − in jn in jn       P X X σ σ σ σ in in jn       µ and σ are always connected with β Thus, µ and σ cannot be identified 10

  11. Standardization • Binary logit model: µ = 1 V( ε in ) = π 2 /6 ( ) ( ) µ exp V exp V = = in in P ( ) ( ) ( ) ( ) µ + µ + in exp V exp V exp V exp V in jn in jn V( ε in ) = 1 /2 • Binary probit model: σ = 1 −   when V( ε in ) = V( ε jn ) and ( ) V V = Φ = Φ − in jn   COV( ε in , ε jn ) = 0 (i.i.d.) P V V σ in in jn   Estimates of V jn = β X jn have different sizes Also applies when comparing multinomial logit and probit models 11

  12. Comparison between multinomial logit model and nested logit model 12

  13. Multinomial logit model ( ) µ exp V = where ε in follows G(0, µ ) in P in ( ) J ∑ µ exp V jn = j 1 ( ) µβ exp X µ Is always connected with β = in Thus, µ cannot be identified ( ) J ∑ µβ exp X jn = j 1 ( ) β exp X standardized by µ = 1 → in ( ) J V( ε in ) = π 2 /6 ∑ β exp X jn = j 1 13

  14. Nested logit model Joint choice of trip destination and • Tree structure • mode Destination d = {I, T}, mode m = {A, R} • Utility function: • U dm = V d + V m + V dm + ε d + ε dm Ise (I) Takayama (T) V d : utility specific to destination d • V m : utility specific to mode m • V dm : utility specific to combination of • destination d and mode m (such as Car (A) Car (A) Train (R) Train (R) travel time) ε d : stochastic utility specific to • destination d ε dm : stochastic utility specific to Alternative1 2 3 4 • combination of destination d and {I, A} {I, R} {T, A} {T, R} mode m 14

  15. Identifiability of parameters { } ( ) µ + exp V V ( ) = dm m dm P d m , { } ∑ ( ) µ + exp V V dm m ' dm ' { } ∈ m ' A R ,   µ   { } ∑ ( ) µ + µ +   exp V ln exp V V µ d dm m dm     { } ∈ m A R , × dm   µ   { } ∑ ∑ ( ) µ + µ +   exp V ln exp V V µ d ' d m ' m d m '     { } { } ∈ ∈ d ' I T , m A R , d m ' • ε dm follows G(0, µ dm ) and ε d + ε dm follows G(0, µ ) which means µ ≤ µ dm • One of µ and µ dm can be identified, and the other should be fixed 15

  16. Two ways of standardization V( ε d + ε dm ) ≥ π 2 /6 • µ dm = 1 0 ≤ µ ≤ 1     ∑ ( ) µ + µ +   exp V ln exp V V ( ) + d m dm     exp V V { } ( ) ∈ = × m A R , m dm P d m , ∑ ( ) +     exp V V ∑ ∑ ( ) µ + µ + m ' dm '   exp V ln exp V V { } ∈ m ' A R , d ' m d m '     { } { } ∈ ∈ d ' I T , m A R , V( ε d + ε dm ) = π 2 /6 • µ = 1 1 ≤ µ dm     { } 1 ∑ ( ) + µ +   exp V ln exp V V { } ( ) µ + µ d dm m dm   exp V V   { } ( ) ∈ m A R , = × dm m dm dm P d m , { } ∑ ( ) µ +     exp V V { } 1 ∑ ∑ ( ) + µ + dm m ' dm '   exp V ln exp V V { } ∈ m ' A R , µ d ' d m ' m d m '     { } { } ∈ ∈ d ' I T , m A R , d m ' µ = 1 is recommended to keep the size of β comparable with multinomial logit model 16

  17. Comparison between nested logit model and mixed logit model 17

  18. Stochastic terms of nested logit model and mixed logit model • Tree structure Nested logit model • U dm = V d + V m + V dm + ε d + ε dm • ε dm follows G(0, µ dm ) Ise (I) Takayama (T) • ε d + ε dm follows G(0, µ ) Mixed logit model Car (A) Car (A) Train (R) Train (R) • U dm = V d + V m + V dm + ε d + ε dm • ε dm follows G(0, µ dm ) Alternative1 2 3 4 • ε d follows N(0, σ d 2 ) {I, A} {I, R} {T, A} {T, R} 18

  19. Stochastic terms of nested logit model and mixed logit model Nested logit model • U dm = V d + V m + V dm + ε d + ε dm • Different probability • ε dm follows G(0, µ dm ) distributions are mixed • ε d + ε dm follows G(0, µ ) • Distributions other than normal can be used, but normal is often used Mixed logit model • Standardized by µ dm = 1, • U dm = V d + V m + V dm + ε d + ε dm 2 + π 2 /6 V( ε d + ε dm ) = σ d • ε dm follows G(0, µ dm ) • Size of β becomes different • ε d follows N(0, σ d 2 ) from nested logit model 19

  20. Nested logit model • U dm = V d + V m + V dm + ε d + ε dm • Tree structure • ε dm follows G(0, µ dm ) • ε d + ε dm follows G(0, µ ) Ise (I) Takayama (T) Utility function for each alternative 1. U IA = V I + V A + V IA + ε I + ε IA Car (A) Car (A) Train (R) Train (R) 2. U IR = V I + V R + V IR + ε I + ε IR 3. U TA = V T + V A + V TA + ε T + ε TA Alternative1 2 3 4 4. U TR = V T + V R + V TR + ε T + ε TR {I, A} {I, R} {T, A} {T, R} 20

  21. Nested logit model • U dm = V d + V m + V dm + ε d + ε dm • ε dm follows G(0, µ dm ) • ε d + ε dm follows G(0, µ ) • ε I is common for alt. 1 & 2, so V( ε IA ) = V( ε IR ) Utility function for each alternative • ε T is common for alt. 3 & 4, 1. U IA = V I + V A + V IA + ε I + ε IA so V( ε TA ) = V( ε TR ) 2. U IR = V I + V R + V IR + ε I + ε IR • However, V( ε I ) and V( ε T ) 3. U TA = V T + V A + V TA + ε T + ε TA can be different • It means µ dm and µ d’m can 4. U TR = V T + V R + V TR + ε T + ε TR be different 21

  22. Mixed logit model • U dm = V d + V m + V dm + ε d + ε dm • ε dm follows G(0, 1 ) ( ) + + + ε exp V V V ( ) ε ε = d m dm d P d m , , ∑ ( ) + + + ε I T exp V V V d ' m ' d m ' ' d ' { } ∈ d m ' ' IA IR TA TR , , , • ε d follows N(0, σ d 2 )     ε ε ( ) 1 ∞ ∞ 1 ( ) ∫ ∫ = ε ε φ φ ε ε     I T P d m , P d m , , d d σ σ σ σ I T I T ε =−∞ ε =−∞     I T I I T T Numerical integration is needed for 2 dimensions 22

Recommend


More recommend