es ma ons of collec ve instabili es for jleic
play

Es#ma#ons of Collec#ve Instabili#es for JLEIC Rui Li JLEIC - PowerPoint PPT Presentation

Es#ma#ons of Collec#ve Instabili#es for JLEIC Rui Li JLEIC Collabora#on Mee#ng 4-3-2016 Collec#ve Effects in JLEIC Electron Ring Ion Rings Electron Cooler Incoherent: LasleD tune shiE, emiDance growth Space


  1. Es#ma#ons of Collec#ve Instabili#es for JLEIC Rui Li JLEIC Collabora#on Mee#ng 4-3-2016

  2. Collec#ve Effects in JLEIC Electron Ring Ion Rings Electron Cooler • Incoherent: LasleD tune shiE, emiDance growth • Space charge • CSR • Coherent: Single-bunch Instability • BBU Coupled-bunch Instability • Ion trapping • ScaDering: IBS Touschek scaDering Residual gas scaDering • Heat load • Feedback • Two-stream effects: Beam-Beam Ion effects E-cloud effects

  3. Wakefield/Impedance Effects on Collec#ve Instabili#es Harmful effects of wakefield/impedance on machine performance • Longitudinal and transverse tune shiE – Heat load (local) – Phase space degrada#on: emiDance growth, increase of energy spread, etc – Collec#ve instabili#es (global) – • Study of wakefield/impedance on collec#ve instabili#es Instability threshold impedance ( ) th eff NB Z ! budegt ? Z ! I ave ( ) th eff NB Z ⊥ machine I ( ) th eff ? BB Z ! Z ⊥ I b ( ) th eff BB Z ⊥ SC , Z ! , ⊥ CSR Z ! , ⊥

  4. Outline • Status of impedance es#ma#on • JLEIC Parameters • Longitudinal single-bunch instability • Transverse single-bunch instability • Longitudinal coupled-bunch instability • Transverse coupled-bunch instability • Summary

  5. Status of Impedance Es#ma#on

  6. Impedance Budget and Instability Assessment Complete inventory for all impedance-genera#ng elements Engineer design itera#ve and gradually refined process Impedance Instability budget assessment Database of impedance Analy#cal and/or numerical spectrum for each elements studies of instabili#es

  7. Impedance Studies for JLEIC We are at early stage of both engineer design and impedance budget studies • – The es#ma#on will be further improved as the engineer design is refined e-ring • – Start with PEPII la\ce and impedance – Compare JLEIC from PEPII: circumference, number of FODO cells, tapers needed, RF cavi#es, etc – Start building our inventory or database based on best possible approxima#ons – Update/Iterate when new informa#on is available Ion-ring • – Start from RHIC or LHC and its impedance (but short bunches for JLEIC), – Compare JLEIC with RHIC: circumference, number of FODO cells, tapers needed, RF cavi#es, cold sec#on, warm sec#on, beam pipe material, (for short bunches, feedback and bpm could be very different from those used in RHIC… bunch forma#on... ) – Start building our inventory or database based on best possible approxima#ons – Update/Iterate when new informa#on is available

  8. Counts of Impedance-Genera#ng Elements (JLEIC vs. PEPII) PEPII-HER (Courtesy to Tim Michalski)

  9. Broadband Impedance for JLEIC e-Ring Major Z // PEP-II L (nH) JLEIC L (nH) KEKB SuperKEKB contributors counts counts L (nH) L (nH) BPM 290 11 405 15.4 0.8 0.6 Arc Bellows 198 13.5 480 32.7 6.6 5.1 Tapers 12 3.6 6 1.8 1.3 0.1 Flanges 582 0.47 1215 0.98 18.5 4.1 collimators 12 18.9 12 18.9 11.9 13.0 Feedback 2 29.8 2 29.8 0.0 0.0 kicker IR chamber 5.0 5.0 0.6 0.6 … … … … … … … Total L (nH) 83.3 105.6 60.1 33.5 (D. Zhou, TWIICE 2 Z ! n ≈ 0.07 Ω Z ! n ≈ 0.09 Ω (S. Heifets et. al, Workshop, 2016) SKAC-AP-99)

  10. Goals for Impedance Studies • Work together with RF, diagnos#c, vacuum system teams to – obtain accurate impedance spectrum for the whole machine (as done in SuperKEKB) – get machine impedance within instability threshold (D. Zhou, TWIICE 2 Workshop, 2016)

  11. JLEIC Parameters for the Collider Rings

  12. JLEIC Baseline Parameters CM energy GeV 21.9 44.7 63.3 (low) (medium) (high) p e p e p e Beam energy GeV 40 3 100 5 100 10 Collision frequency MHz 476 476 476/4=119 Particles per bunch 10 10 0.98 3.7 0.98 3.7 3.9 3.7 Beam current A 0.75 2.8 0.75 2.8 0.75 0.71 Polarization % 80 80 80 80 80 75 Bunch length, RMS cm 3 1 1 1 2.2 1 Norm. emitt., hor./vert. µm 0.3/0.3 24/24 0.5/0.1 54/10.8 0.9/0.18 432/86.4 Horizontal & vertical β * cm 8/8 13.5/13.5 6/1.2 5.1/1 10.5/2.1 4/0.8 Vert. beam-beam param. 0.015 0.092 0.015 0.068 0.008 0.034 Laslett tune-shift 0.06 7x10 -4 0.055 6x10 -4 0.056 7x10 -5 Detector space, up/down m 3.6/7 3.2/3 3.6/7 3.2/3 3.6/7 3.2/3 Hourglass(HG) reduction 1 0.87 0.75 Luminosity/IP, w/HG, 10 33 cm -2 s -1 2.5 21.4 5.9 “JLEIC Main Parameters with Strong Electron Cooling”, Y. Zhang (2017)

  13. Parameters for the Electron Ring (Courtesy to Fanglei Lin)

  14. Parameters for the Proton Ring (Courtesy to Vasiliy Morozov)

  15. Longitudinal Single Bunch Instability (e-Ring) • Longitudinal Microwave Instability Observa#on at PSR of Los Alamos • Longitudinal Mode Coupling Instability

  16. Longitudinal Single Bunch Instability (e-Ring) • Observa#on at APS (2001) • Features: not fatal instability

  17. Longitudinal Single Bunch Instability (e-Ring) • Longitudinal Microwave Instability Threshold = 2 π η ( E / e ) σ δ 2 Z ! ( n ) n I peak eff,th PEP-II (LER) JLEIC Electron Ring 3.1 3 5 10 E (GeV) 113 59.0 62.35 50.6 I p (A) η (10 − 3 ) 1.31 1.09 1.09 1.09 σ δ (10 − 4 ) 8.0 2.78 4.55 9.28 0.145 0.027 0.125 1.16 eff,th [ Ω ] Z ! n PEP-II machine Unstable! Marginally impedance Stable Stable eff ≈ 0.1 Ω Z ! n

  18. Longitudinal Single Bunch Instability (e-Ring) • Longitudinal Microwave Instability Threshold E=10 GeV E=5 GeV PEP-II Impedance E=3 GeV

  19. Change of e-Beam Emittance: Bending Radius High Energy Ring PEP-II Low energy ring dipoles Low Energy Ring High energy Matching emittance ring dipoles (Y. Zhang, JLEIC R&D mtg) Matching beta-star

  20. (D. Zhou, “Accelerator Physics Challenges at SUPERKEKB”, 2015 )

  21. Longitudinal Single Bunch Instability (p-Ring) • Longitudinal Single-Bunch Instability Threshold JLEIC RHIC: injecCon acceleraCon store 100 29 250 250 E (GeV) 15.6 5.4 5.4 26.6 I p (A) η (10 − 3 ) 6.22 0.72 1.9 1.9 σ δ (10 − 4 ) 3.0 4.66 0.54 2.65 22.5 5.2 1.6 7.9 eff,th [ Ω ] Z ! n Stable! (RHIC/AP/36) proton beam rebucke#ng E (GeV) store 250 N b = 10 11 (20 ms) (10 hrs) ( γ t = 22.89) IBS RHIC Machine eff = 0.5 Ω Z ! n injec#on impedance: 29 ( for f > 250 MHz) (30 sec) time

  22. Comments • At lower energies, the JLEIC e-beam is vulnerable to the longitudinal single bunch instability • Comparison to the PEP-II LER case shows that the low momentum spread from JLEIC dipole configura#on is not enough to provide necessary Landau damping to suppress the instability • Accurate assessment of LSBI requires effec#ve impedance that depends on the actual longitudinal bunch distribu#on, including PWD effect for e-beam and strong cooling effect for the ion beam • Complete studies need to use full impedance informa#on and tracking of par#cle dynamics

  23. Transverse Single Bunch Instability

  24. Transverse Single Bunch Instability • Transverse Fast Blowup Instability -coas#ng beam approxima#on • Transverse Mode Coupling Instability -Strong head-tail instability -Head-tail instability • Feature: fatal beam loss (brick-wall Instability) Growth #me faster than synchrotron period

  25. Transverse Single Bunch Instability (e-Ring) • Transverse Mode Coupling Threshold Z ⊥ ( n ) eff,th ≈ 16 2 π ( E / e ) υ s β ⊥ I peak 3 (should include bunch lengthening effects) PEP-II (LER) JLEIC Electron Ring E (GeV) 3.1 3 5 10 113 59.0 62.35 50.6 I p (A) 3.7 0.88 1.46 2.51 ν s (10 − 2 ) 20 13 13 13 β ⊥ 1.2 0.81 2.25 9.0 Z ⊥ eff,th [M Ω / m] PEPII Stable Stable Z ⊥ = 0.5M Ω / m

  26. In PEPII Design Report for Z ⊥ = 0.5 M Ω m The instability sets in when m=0 and m=-1 Frequencies merge. Threshold calculated by MOSES [Chin] (horizontal plane) Z ⊥ = 1.3 M Ω /m I b == 6.5 mA (HER) I b = 2.2 mA (LER) for Z ⊥ = 0.5 M Ω m Required single bunch current: I b == 0.6 mA (HER) I b = 1.3 mA (LER) ⇒ stable!

  27. Transverse Single Bunch Instability (p-Ring) • Transverse Mode Coupling Threshold RHIC (p-store) JLEIC ion Ring 250 100 E (GeV) I p (A) 26.6 15.6 ν s (10 − 2 ) 0.0043 0.053 β ⊥ 28 64 16.9 63 Z ⊥ eff,th [M Ω / m] Stable “TRANSVERSE IMPEDANCE RHIC measured transverse BB impedance: MEASUREMENT AT THE BB ≈ 3-5 M Ω /m Z ⊥ RHIC”, S. Y. Zhang, EPAC2002

  28. “TRANSVERSE MODE COUPLING IN STABILITY IN THE SPS: HEADTAIL SIMULATIONS AND MOSES CALCULATIONS” (B. Salvant, Beam’07) • Example of betatron sideband and and mode coupling from par#cle tracking for SPS • Agree with MOSES results • We need to study this aEer more impedance informa#on are figured out

  29. Coupled Bunch Instabili#es in JLEIC • Here the instability es#ma#ons are done by ZAP (Courtesy to Ji Qiang) • These es#ma#ons assume even filling, which tends to over-es#mate the instability growth rate • The instability grows much faster than the natural damping #me, so we rely on fast feedback to control the instability • Approach: use RF HOM impedance and designed I ave to calculate LCBI or TCBI growth #me, and compare with damping #me of bunch-by-bunch feedback system

  30. τ g ≈ 0.3 ms τ g ≈ 2.2 ms

  31. PEP-II Cavity Impedance for JLEIC e-Ring “PEP-II RF cavity revisited”, R. Rimmer et. al, (1999)

Recommend


More recommend