equiangular lines in euclidean spaces
play

Equiangular lines in Euclidean spaces Gary Greaves Tohoku - PowerPoint PPT Presentation

Equiangular lines in Euclidean spaces Gary Greaves Tohoku University 3rd June 2014 joint work with J. Koolen, A. Munemasa, and F. Szllsi. Gary Greaves Equiangular lines in Euclidean spaces 1/13 Plan From lines to


  1. Equiangular lines in Euclidean spaces Gary Greaves 東 北 大 学 Tohoku University 3rd June 2014 joint work with J. Koolen, A. Munemasa, and F. Szöllősi. Gary Greaves — Equiangular lines in Euclidean spaces 1/13

  2. Plan ◮ From lines to matrices; ◮ A contentious table; ◮ Seidel matrices with 3 eigenvalues; ◮ A strengthening of the relative bound. Gary Greaves — Equiangular lines in Euclidean spaces 2/13

  3. Equiangular line systems ◮ Let L be a system of n lines spanned by v 1 , . . . , v n ∈ R d . ◮ L is equiangular if � v i , v i � = 1 and |� v i , v j �| = α ( α is called the common angle ). ◮ Problem: given d , what is the largest possible number N ( d ) of equiangular lines in R d ? Example ◮ An orthonormal basis: n = d and α = 0 . ◮ N ( d ) � d . Gary Greaves — Equiangular lines in Euclidean spaces 3/13

  4. Seidel matrices Let L be an equiangular line system of n lines in R d with common angle α . ◮ Let M be the Gram matrix for the line system L . ◮ Then M is positive semidefinite with nullity n − d . ◮ Assume α > 0 and set S = ( M − I ) / α . ◮ S is a { 0, ± 1 } -matrix with smallest eigenvalue − 1/ α with multiplicity n − d . ◮ S = S ( L ) is called a Seidel matrix . ◮ Relation to graphs: S = J − I − 2 A . Gary Greaves — Equiangular lines in Euclidean spaces 4/13

  5. Icosahedron o0 o1 i0 o5 i1 i5 i2 i4 o2 i3 o4 o3 Gary Greaves — Equiangular lines in Euclidean spaces 5/13

  6. Icosahedron o0 o1 o5 i0 i1 i5 i2 i4 i3 o2 o4 o3 Gary Greaves — Equiangular lines in Euclidean spaces 5/13

  7. Icosahedron o0 o1 o5 i0 i1 i5 i2 i4 i3 o2 o4 o3 Gary Greaves — Equiangular lines in Euclidean spaces 5/13

  8. Icosahedron o0 o1 o5 i0 i1 i5 i2 i4 i3 o2 o4 o3 Gary Greaves — Equiangular lines in Euclidean spaces 5/13

  9. Icosahedron o0 o1 o5 i0 i1 i5 i2 i4 i3 o2 o4 o3 Gary Greaves — Equiangular lines in Euclidean spaces 5/13

  10. Icosahedron o0 o1 o5 i0 i1 i5 i2 i4 i3 o2 o4 o3 Gary Greaves — Equiangular lines in Euclidean spaces 5/13

  11. Icosahedron o0 o1 o5 i0 i1 i5 i2 i4 i3 o2 o4 o3 Gary Greaves — Equiangular lines in Euclidean spaces 5/13

  12. Icosahedron o0 o1 o5 i0 i1 i5 i2 i4 i3 o2 o4 o3 Gary Greaves — Equiangular lines in Euclidean spaces 5/13

  13. Icosahedron   0 1 1 1 1 1 − 1 − 1 1 0 1 1     − 1 − 1 1 1 0 1   S = ;   1 − 1 1 0 1 − 1     − 1 − 1 1 1 0 1   1 1 − 1 − 1 1 0 √ √ 5 ] 3 , [ 5 ] 3 } ; ◮ Spectrum: { [ − √ ◮ n = 6 , d = 3 , and α = 1/ 5 . ◮ Question: for d = 3 , can we do better than n = 6 ? Gary Greaves — Equiangular lines in Euclidean spaces 5/13

  14. Upper bounds Let L be an equiangular line system of n lines in R d with smallest eigenvalue λ 0 . ◮ Gerzon ’73: n � d ( d + 1 ) Absolute bound : . 2 √ ◮ van Lint and Seidel ’66: for λ 0 < − d + 2 n � d ( λ 2 0 − 1 ) Relative bound : 0 − d . λ 2 ◮ Neumann ’73: If n > 2 d then λ 0 is an odd integer. Gary Greaves — Equiangular lines in Euclidean spaces 6/13

  15. Maximal sets of equiangular lines Let L be an equiangular line system of n lines in R d with common angle α . d 2 3 4 5 6 7 – 13 14 15 16 17 18 19 20 n 3 6 6 10 16 28 28 36 40 48 48 72 90 30 42 51 61 76 96 Gary Greaves — Equiangular lines in Euclidean spaces 7/13

  16. Maximal sets of equiangular lines Let L be an equiangular line system of n lines in R d with common angle α . d 2 3 4 5 6 7 – 13 14 15 16 17 18 19 20 n 3 6 6 10 16 28 28 36 40 48 48 72 90 30 42 51 61 76 96 But according to wikipedia and the OEIS: d 2 3 4 5 6 7 – 13 14 15 16 17 18 19 20 n 3 6 6 10 16 28 28 36 40 48 48 72 90 76 96 Gary Greaves — Equiangular lines in Euclidean spaces 7/13

  17. Maximal sets of equiangular lines Let L be an equiangular line system of n lines in R d with common angle α . d 2 3 4 5 6 7 – 13 14 15 16 17 18 19 20 n 3 6 6 10 16 28 28 36 40 48 48 72 90 29 41 51 61 76 96 But according to wikipedia and the OEIS: d 2 3 4 5 6 7 – 13 14 15 16 17 18 19 20 n 3 6 6 10 16 28 28 36 40 48 48 72 90 76 96 Gary Greaves — Equiangular lines in Euclidean spaces 7/13

  18. Properties of Seidel matrices with 3 eigenvalues Let S be an n × n Seidel matrix with precisely 3 distinct eigenvalues λ < θ < η . ◮ tr S = 0 , tr S 2 = n ( n − 1 ) ; ◮ det S ≡ ( − 1 ) n − 1 ( n − 1 ) mod 4 ; ◮ ( S − λ I )( S − θ I )( S − η I ) = 0 . Theorem For primes p ≡ 3 mod 4 , there do not exist any p × p Seidel matrices having precisely 3 distinct eigenvalues. Except for n = 4 , they exist for all other n . n 3 4 5 6 7 8 9 10 11 12 # 0 0 1 2 0 2 3 4 0 10 Gary Greaves — Equiangular lines in Euclidean spaces 8/13

  19. 30 equiangular lines in R 14 ? Let S be an n × n Seidel matrix with spectrum λ ( n − d ) < λ 1 � λ 2 � · · · � λ d . 0 Using the trace formulae, we have d ∑ λ i = − ( n − d ) λ 0 ; i = 1 d λ 2 i = n ( n − 1 ) − ( n − d ) λ 2 ∑ 0 . i = 1 Case: d = 14 , n = 30 , and λ 0 = − 5 . Set µ i = λ i − 6 . Then d � u 2 ∑ d ∏ u 2 1 = i / d � i � 1. i = 1 Hence u i ∈ {± 1 } . Gary Greaves — Equiangular lines in Euclidean spaces 9/13

  20. Strengthening the relative bound Theorem Let S be an n × n Seidel matrix with eigenvalues λ ( n − d ) < λ 1 � λ 2 � · · · � λ d , 0 � � d ( λ 2 0 − 1 ) and suppose λ 2 0 � d + 2 . If n = and some λ 2 0 − d integrality condition and nonzero condition are satisfied. Then S has at most 3 distinct eigenvalues. ◮ 30 lines in R 14 { [ − 5 ] 16 , [ 5 ] 9 , [ 7 ] 5 } ; — ◮ 42 lines in R 16 { [ − 5 ] 26 , [ 7 ] 7 , [ 9 ] 9 } . — Gary Greaves — Equiangular lines in Euclidean spaces 10/13

  21. Euler graphs An Euler graph is a graph each of whose vertices have even valency. Theorem (Mallows-Sloane ’75) The number of switching classes of n × n Seidel matrices equals the number of Euler graphs on n vertices. Theorem Let S be a Seidel matrix with precisely 3 distinct eigenvalues. Then S is switching equivalent to a Seidel matrix S ′ = J − I − 2 A where A is the adjacency matrix of an Euler graph. Gary Greaves — Equiangular lines in Euclidean spaces 11/13

  22. 30 and 42 Theorem Let S be an n × n Seidel matrix with spec. { [ λ ] a , [ µ ] b , [ ν ] c } . Suppose n ≡ 2 mod 4 , λ + µ ≡ 0 mod 4 , and | n − 1 + λµ | = 4 . Then | ν 2 − ( λ + µ ) ν + λµ | /4 = n / c ∈ Z and | ν | � n / c − 1 . Gary Greaves — Equiangular lines in Euclidean spaces 12/13

  23. 30 and 42 Theorem Let S be an n × n Seidel matrix with spec. { [ λ ] a , [ µ ] b , [ ν ] c } . Suppose n ≡ 2 mod 4 , λ + µ ≡ 0 mod 4 , and | n − 1 + λµ | = 4 . Then | ν 2 − ( λ + µ ) ν + λµ | /4 = n / c ∈ Z and | ν | � n / c − 1 . Corollary The candidate Seidel matrices with spectra { [ − 5 ] 16 , [ 5 ] 9 , [ 7 ] 5 } and { [ − 5 ] 26 , [ 7 ] 7 , [ 9 ] 9 } do not exist. Corollary Regular graphs with spectra { [ 11 ] 1 , [ 2 ] 16 , [ − 3 ] 9 , [ − 4 ] 4 } and { [ 12 ] 1 , [ 2 ] 16 , [ − 3 ] 8 , [ − 4 ] 5 } do not exist. Gary Greaves — Equiangular lines in Euclidean spaces 12/13

  24. Feasible Seidel matrices with 3 eigenvalues n d Exist? λ µ ν [ − 5 ] 14 [ 3 ] 7 [ 7 ] 7 28 14 Y [ − 5 ] 16 [ 5 ] 9 [ 7 ] 5 30 14 N [ − 5 ] 24 [ 5 ] 6 [ 9 ] 10 40 16 ? [ − 5 ] 24 [ 7 ] 15 [ 15 ] 1 40 16 Y [ − 5 ] 26 [ 7 ] 7 [ 9 ] 9 42 16 N [ − 5 ] 31 [ 7 ] 8 [ 11 ] 9 48 17 Y [ − 5 ] 32 [ 9 ] 16 [ 16 ] 1 49 17 ? [ − 5 ] 30 [ 3 ] 6 [ 11 ] 12 48 18 ? [ − 5 ] 30 [ 7 ] 16 [ 19 ] 2 48 18 ? [ − 5 ] 36 [ 7 ] 9 [ 13 ] 9 54 18 ? [ − 5 ] 42 [ 11 ] 15 [ 15 ] 3 60 18 ? [ − 5 ] 53 [ 13 ] 16 [ 19 ] 3 72 19 Y [ − 5 ] 56 [ 10 ] 1 [ 15 ] 18 75 19 ? [ − 5 ] 70 [ 13 ] 5 [ 19 ] 15 90 20 ? [ − 5 ] 75 [ 14 ] 1 [ 19 ] 19 95 20 ? Gary Greaves — Equiangular lines in Euclidean spaces 13/13

Recommend


More recommend