euclidean domains and euclidean functions
play

Euclidean Domains and Euclidean Functions Rod Downey (Joint Work - PowerPoint PPT Presentation

Euclidean Domains and Euclidean Functions Rod Downey (Joint Work with Asher Kach) Chicago May 2010 Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 1 / 44 References Th. Motzkin, The Euclidean algorithm. Bull.


  1. Euclidean Domains and Euclidean Functions Rod Downey (Joint Work with Asher Kach) Chicago May 2010 Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 1 / 44

  2. References Th. Motzkin, The Euclidean algorithm. Bull. Amer. Math. Soc. , 55:1142–1146, 1949. Leonard Schrieber. Recursive properties of Euclidean domains. Ann. Pure Appl. Logic , 29(1):59–77, 1985. Pierre Samuel. About Euclidean rings. J. Algebra , 19:282–301, 1971. V. Stoltenberg-Hansen and J. V. Tucker. Computable rings and fields. In Handbook of computability theory , volume 140 of Stud. Logic Found. Math. , pages 363–447. North-Holland, Amsterdam, 1999. Rod Downey and Asher Kach, Euclidean Functions of Computable Euclidean Domains, submitted. Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 2 / 44

  3. Outline The Division Algorithm, Euclid’s Algorithm, and Euclidean Domains 1 Transfinite Euclidean Domains and Rings 2 Computing Any Euclidean Function φ for R and φ R 3 Open Questions 4 Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 3 / 44

  4. The Division Algorithm... Problem Divide 18 into 218 (over Z ). Answer. Perform long division 12 � 18 218 180 38 36 2 and so 218 = 12 · 18 + 2. Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 4 / 44

  5. The Division Algorithm... Problem Divide x + 2 into x 3 + 18 x 2 + 2 x + 18 (over Q ). Answer. Perform long division and so x 3 + 18 x 2 + 2 x + 18 = ( x 2 + 16 x − 30 )( x + 2 ) + 78. Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 5 / 44

  6. Euclid’s Algorithm... Proposition The algorithm function gcd( a , b ) if ( a < b ) swap( a , b ) if ( b == 0 ) return a return gcd( a − b , b ) computes the greatest common divisor of non-negative integers a and b. Problem Find the greatest common divisor of 18 and 10. Answer. Note gcd ( 18 , 10 ) = gcd ( 8 , 10 ) = gcd ( 10 , 8 ) = gcd ( 2 , 8 ) = gcd ( 8 , 2 ) = gcd ( 6 , 2 ) = gcd ( 4 , 2 ) = gcd ( 2 , 2 ) = gcd ( 0 , 2 ) = gcd ( 2 , 0 ) = 2. Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 6 / 44

  7. Euclid’s Algorithm... Proposition The algorithm function gcd( a , b ) if ( a < b ) swap( a , b ) if ( b == 0 ) return a return gcd( a − b , b ) computes the greatest common divisor of non-negative integers a and b. Problem Find the greatest common divisor of 18 and 10. Answer. Note gcd ( 18 , 10 ) = gcd ( 8 , 10 ) = gcd ( 10 , 8 ) = gcd ( 2 , 8 ) = gcd ( 8 , 2 ) = gcd ( 6 , 2 ) = gcd ( 4 , 2 ) = gcd ( 2 , 2 ) = gcd ( 0 , 2 ) = gcd ( 2 , 0 ) = 2. Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 6 / 44

  8. The Division Algorithm and Euclid’s Algorithm... Remark In both Z and Q [ X ] , the division algorithm (Euclid’s algorithm) terminates because the dividend (either a or b ) decreases in size at every step. Within Z , the size of an integer is its magnitude. Within Q [ X ] , the size of a polynomial is its degree. Generalizing this requirement of remainders decreasing in size yields the (traditional) definition of a Euclidean domain. Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 7 / 44

  9. Defining Euclidean Domains... Definition A commutative ring R is a Euclidean ring if there is a function φ : R 0 → N (where R 0 := R \{ 0 } ) satisfying ( ∀ a , d ∈ R 0 )( ∃ q ∈ R ) � � a + qd = 0 or φ ( a + qd ) < φ ( d ) . The function φ is termed a Euclidean function for R . If the ring is also an integral domain (i.e., there are no zero divisors) then it becomes a Euclidean Domain. Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 8 / 44

  10. Euclidean Functions for Z ... Example The integers Z are a Euclidean domain. Proof. The functions φ 1 ( z ) = | z | ⌈ log 2 | z |⌉ φ 2 ( z ) = � | z | if z � = 5 φ 3 ( z ) = 13 otherwise are Euclidean functions for Z . Note that φ 3 serves as an example where the implication x divides y implies φ ( x ) ≤ φ ( y ) fails. Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 9 / 44

  11. Euclidean Functions for Z ... Example The integers Z are a Euclidean domain. Proof. The functions φ 1 ( z ) = | z | ⌈ log 2 | z |⌉ φ 2 ( z ) = � | z | if z � = 5 φ 3 ( z ) = 13 otherwise are Euclidean functions for Z . Note that φ 3 serves as an example where the implication x divides y implies φ ( x ) ≤ φ ( y ) fails. Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 9 / 44

  12. Euclidean Functions for Z ... Example The integers Z are a Euclidean domain. Proof. The functions φ 1 ( z ) = | z | ⌈ log 2 | z |⌉ φ 2 ( z ) = � | z | if z � = 5 φ 3 ( z ) = 13 otherwise are Euclidean functions for Z . Note that φ 3 serves as an example where the implication x divides y implies φ ( x ) ≤ φ ( y ) fails. Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 9 / 44

  13. Euclidean without Euclidean functions Definition If R is a commutative ring (with 1), define a sequence of sets { R n } n ∈ N via recursion by R n := { d ∈ R 0 : ( ∀ a ∈ R 0 )( ∃ q ∈ R ) [ a + dq = 0 or a + dq ∈ R < n ] } m < n R m and R 0 = R − { 0 } . where R < n = � Remark Thus R 0 consists of the units, R 1 consists of those elements which exactly divide every other a ∈ R 0 or leave remainder a unit, etc. (NB if you read Samuel, R 1 = R 2 there) Theorem (Motzkin 1949, Samuel 1971) An integral domain R (resp. ring) is a Euclidean domain (resp. ring)if and only if R 0 = � n ∈ N R n . Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 10 / 44

  14. Euclidean without Euclidean functions Definition If R is a commutative ring (with 1), define a sequence of sets { R n } n ∈ N via recursion by R n := { d ∈ R 0 : ( ∀ a ∈ R 0 )( ∃ q ∈ R ) [ a + dq = 0 or a + dq ∈ R < n ] } m < n R m and R 0 = R − { 0 } . where R < n = � Remark Thus R 0 consists of the units, R 1 consists of those elements which exactly divide every other a ∈ R 0 or leave remainder a unit, etc. (NB if you read Samuel, R 1 = R 2 there) Theorem (Motzkin 1949, Samuel 1971) An integral domain R (resp. ring) is a Euclidean domain (resp. ring)if and only if R 0 = � n ∈ N R n . Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 10 / 44

  15. Euclidean without Euclidean functions Definition If R is a commutative ring (with 1), define a sequence of sets { R n } n ∈ N via recursion by R n := { d ∈ R 0 : ( ∀ a ∈ R 0 )( ∃ q ∈ R ) [ a + dq = 0 or a + dq ∈ R < n ] } m < n R m and R 0 = R − { 0 } . where R < n = � Remark Thus R 0 consists of the units, R 1 consists of those elements which exactly divide every other a ∈ R 0 or leave remainder a unit, etc. (NB if you read Samuel, R 1 = R 2 there) Theorem (Motzkin 1949, Samuel 1971) An integral domain R (resp. ring) is a Euclidean domain (resp. ring)if and only if R 0 = � n ∈ N R n . Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 10 / 44

  16. The Least Euclidean Function φ R Definition (Motzkin 1949, Samuel 1971) If R is a Euclidean domain (ring), define φ R : R 0 → N by φ R ( d ) = n where n is least so that d ∈ R n . Theorem (Motzkin 1949, Samuel 1971) If R is a Euclidean domain (resp. ring), the function φ R is a Euclidean function for R . Moreover, it is the least Euclidean function for R ; i.e., if φ is a Euclidean function for R , then φ R ( d ) ≤ φ ( d ) for all d ∈ R 0 . Consequently, the function φ R satisfies φ R ( d ) = inf φ φ ( d ) where φ ranges over all Euclidean functions for R . Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 11 / 44

  17. The Least Euclidean Function φ R Definition (Motzkin 1949, Samuel 1971) If R is a Euclidean domain (ring), define φ R : R 0 → N by φ R ( d ) = n where n is least so that d ∈ R n . Theorem (Motzkin 1949, Samuel 1971) If R is a Euclidean domain (resp. ring), the function φ R is a Euclidean function for R . Moreover, it is the least Euclidean function for R ; i.e., if φ is a Euclidean function for R , then φ R ( d ) ≤ φ ( d ) for all d ∈ R 0 . Consequently, the function φ R satisfies φ R ( d ) = inf φ φ ( d ) where φ ranges over all Euclidean functions for R . Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 11 / 44

  18. The Least Euclidean Function φ R Definition (Motzkin 1949, Samuel 1971) If R is a Euclidean domain (ring), define φ R : R 0 → N by φ R ( d ) = n where n is least so that d ∈ R n . Theorem (Motzkin 1949, Samuel 1971) If R is a Euclidean domain (resp. ring), the function φ R is a Euclidean function for R . Moreover, it is the least Euclidean function for R ; i.e., if φ is a Euclidean function for R , then φ R ( d ) ≤ φ ( d ) for all d ∈ R 0 . Consequently, the function φ R satisfies φ R ( d ) = inf φ φ ( d ) where φ ranges over all Euclidean functions for R . Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 11 / 44

  19. I am sure that, as logicians, you immediately notice that it is unnecessary in the definition of a Euclidean ring that the range of the ranking function is N . Any ordinal will do, and maybe even well founded partial orders. Rod Downey (VUW) Computable Euclidean Domains and Euclidean Functions May 2010 12 / 44

Recommend


More recommend