A Union of Euclidean Spaces is Euclidean Konstantin Makarychev, Northwestern Yury Makarychev, TTIC AMS Meeting, New York, May 7, 2017
Problem by Assaf Naor Suppose that metric space (π, π) is a union of two metric spaces π΅ and πΆ that isometrically embed into β 2 . Does π necessarily embed into β 2 with a constant distortion? π΅ β 2 πΆ
Motivation The problem is closely connected to research in theoretical computer science on βlocal -global propertiesβ of metric spaces [Arora, LovΓ‘sz, Newman, Rabani, Rabinovich, Vempala `06; Charikar, M, Makarychev `07] Why are computer scientists interested? Results imply strong lower bounds for Sherali-Adams linear programming relaxations for many combinatorial optimization problems, including Sparsest Cut, Vertex Cover, Max Cut, Unique Games. [Charikar, M, Makarychev `09]
Our Results Q: Suppose that metric space (π, π) is a union of two metric spaces π΅ and πΆ that embed isometrically into β 2 . Does π necessarily embed into β 2 with a constant distortion? A: Yes, π embeds into β 2 with distortion at most 8.93. π with distortion π½ , πΆ βͺ β 2 π with distortion πΎ π΅ βͺ β 2 β π+π+1 with distortion at most 11π½πΎ π = π΅ βͺ πΆ βͺ β 2
Approach This talk: consider the isometric case. π 1 : π΅ βͺ β 2 π 2 : πΆ βͺ β 2 We will define 3 maps: β’ ΰ΄€ π 1 : π΅ βͺ πΆ βͺ β 2 , a 7-Lipschitz extension of π 1 to π β’ ΰ΄€ π 2 : π΅ βͺ πΆ βͺ β 2 , a 7-Lipschitz extension of π 2 to π β’ Ξ π¦ = π π¦, π΅ β π(π¦, πΆ) π = ΰ΄€ π 1 β ΰ΄€ π 2 β Ξ
Approach π = ΰ΄€ π 1 β ΰ΄€ π 2 β Ξ Assume that we have β’ ΰ΄€ π 1 : π΅ βͺ πΆ βͺ β 2 , a 7-Lipschitz extension of π 1 to π β’ ΰ΄€ π 2 : π΅ βͺ πΆ βͺ β 2 , a 7-Lipschitz extension of π 2 to π β’ Ξ π¦ = π π¦, π΅ β π(π¦, πΆ) First, 7 2 + 7 2 + 2 2 π πππ = π 1 β ΰ΄€ ΰ΄€ π 2 β Ξ πππ β€ since Ξ πππ β€ 2 .
Approach π = ΰ΄€ π 1 β ΰ΄€ π 2 β Ξ β’ ΰ΄€ π 1 ensures that distances between points in π΅ donβt decrease: π 1 Θ π΅ = π 1 is an isometric embedding of π΅ into β 2 . ΰ΄€ β’ ΰ΄€ π 2 ensures that distances between points in πΆ donβt decrease. β’ Ξ ensures that distances between points π β π΅ and π β πΆ donβt decrease by more than a constant factor.
Approach π = ΰ΄€ π 1 β ΰ΄€ π 2 β Ξ π π΅ πβ² π πΆ If π π, πβ² βͺ π(π, π) then π 2 π β² π 2 (π) β ΰ΄€ ΰ΄€ π 2 (π) β ΰ΄€ β ΰ΄€ π 2 π = π π β² , π β π(π, π) If π π, πβ² β π(π, π) then β₯ π(π, π β² ) β π(π, π) Ξ(π) β Ξ(π) πβ² is the closest point to π in πΆ
Approach π = ΰ΄€ π 1 β ΰ΄€ π 2 β Ξ π π΅ π πβ² πΆ If π π, πβ² βͺ π(π, π) then π 2 π β² π 2 (π) β ΰ΄€ ΰ΄€ π 2 (π) β ΰ΄€ β ΰ΄€ π 2 π = π π β² , π β π(π, π) If π π, πβ² β π(π, π) then β₯ π(π, π β² ) β π(π, π) Ξ(π) β Ξ(π)
Constructing maps ΰ΄€ π 1 and ΰ΄€ π 2 Goal: Given a map π β‘ π 2 : πΆ β β 2 find a Lipschitz extension ΰ΄€ π: π΅ βͺ πΆ β β 2 of π . π ΰ΄€ π΅ β 2 π πΆ
Constructing maps ΰ΄€ π 1 and ΰ΄€ π 2 Assume that πΆ β β 2 and π = ππ ; π΅ βͺ πΆ < β . π ΰ΄€ β 2 π΅ πΆ
Constructing map ΰ΄€ π Idea 1: map every π to the closest π β² β πΆ w.r.t. π . Issue: the map may not be Lipschitz. π ΰ΄€ πβ² π π΅ πΆ
Cover for π΅ Let π π = π π, πΆ for π β π΅ . π· β π΅ is a cover for π΅ if β’ for every π β π΅ , there is π β π· s.t. π π, π β€ π π and π π β€ π π β’ for every π, π β π· : π π, π β₯ min π π , π π . π π¦ π π¦ π π π π π β π΅ is close to some π β π· points in π· are βseparatedβ
Cover for π΅ Prove by induction that there is always a cover π« . Let π β π΅ be the point in π΅ with the least value of π π . By induction, there is a cover π·β² for π΅ β Ball π, π π . Let π· = π· β² βͺ {π} . π΅
Cover for π΅ Prove by induction that there is always a cover π« . Let π β π΅ be the point in π΅ with the least value of π π . By induction, there is a cover π·β² for π΅ β Ball π, π π . Let π· = π· β² βͺ {π} . π
Cover for π΅ Prove by induction that there is always a cover π« . Let π β π΅ be the point in π΅ with the least value of π π . By induction, there is a cover π·β² for π΅ β Ball π, π π . Let π· = π· β² βͺ {π} . π
Cover for π΅ Prove by induction that there is always a cover π« . Let π β π΅ be the point in π΅ with the least value of π π . By induction, there is a cover π·β² for π΅ β Ball π, π π . Let π· = π· β² βͺ {π} . π
Constructing map ΰ΄€ π Idea 2: map every π β π· to the closest π β² β πΆ . The map is 4-Lipschitz. π πβ² π π΅ πΆ
Constructing map ΰ΄€ π Idea 2: map every π β π· to the closest π β² β πΆ . The map is 4-Lipschitz. Assume π π β€ π π . πβ² π π πβ² π΅ πΆ
Constructing map ΰ΄€ π Idea 2: map every π β π· to the closest π β² β πΆ . The map is 4-Lipschitz. Assume π π β€ π π . πβ² π π πβ² π΅ πΆ
Constructing map ΰ΄€ π Idea 2: map every π β π· to the closest π β² β πΆ . The map is 4-Lipschitz. Assume π π β€ π π . πβ² π π πβ² π΅ πΆ π π β² , π β² β€ 2 π π, π + 2 π π, π β² β€ 4π(π, π)
Kirszbraun Theorem Let π· β πΈ β β 2 and π be a Lipschitz map from π· to β 2 . There exists an extension π: πΈ β β 2 of π such π πππ = π πππ π· β 2 πΈ
Constructing map ΰ΄€ π Idea 2: map every π β π· to the closest π β² β πΆ . Extend π from π· to π΅ using the Kirszbraun theorem. π πβ² π π΅ πΆ
Constructing map ΰ΄€ π Idea 2: map every π β π· to the closest π β² β πΆ . Extend π from π· to π΅ using the Kirszbraun theorem. π π£ = απ π£ , if π£ β π΅ ΰ΄€ π£, if π£ β πΆ π π£ is 7-Lipschitz: ΰ΄€ β’ ΰ΄€ πΘ π΅ is 4-Lipschitz β’ ΰ΄€ πΘ πΆ is 1-Lipschitz β’ π π β ΰ΄€ ΰ΄€ π π = π(π) β π β€ β―
Constructing map ΰ΄€ π π π π(π) π π(π) π΅ πΆ
Constructing map ΰ΄€ π π π π(π) β€ π π β€ 4π π π π β€ π π π π(π) π΅ πΆ π π β π β€ 6π π + π π, π β€ 7π(π, π)
Constructing map ΰ΄€ π π π π(π) β€ π π β€ 4π π π π β€ π π π π(π) π΅ πΆ π π β π β€ 6π π + π π, π β€ 7π(π, π) Q.E.D.
Lower Bound There exists a metric space π = π΅ βͺ πΆ s.t. β’ π΅ and πΆ isometrically embed into β 2 β’ every embedding of π into β 2 has distortion at least 3 β π π , where π = π΅ = ΘπΆΘ and π π β 0 as π β β
Open Problems 1. Find the least value of πΈ s.t. if π΅, πΆ βͺ β 2 isometrically, then π΅ βͺ πΆ βͺ β 2 with distortion at most πΈ . We know that πΈ β 3, 8.93 . 2. Study the problem for other β π . We conjecture that the answer is negative for every π β {2, β} . 3. What happens if π = π΅ 1 βͺ β― βͺ π΅ π and each π΅ π βͺ β 2 isometrically? We only know that π log π β€ πΈ β€ 2 π·π . 4. Assume that every subset of π of size ΘπΘ isometrically embeds into β 2 . What is the least distortion with which π βͺ β 2 ? More results and open problems in the paper!
Recommend
More recommend