enzymatic reactions
play

Enzymatic Reactions 2 Many ways of illustrating the steps - PDF document

12/8/2011 Updated: 8 December 2011 CEE 670 Kinetics Lecture #9 1 Print version CEE 670 TRANSPORT PROCESSES IN ENVIRONMENTAL AND WATER RESOURCES ENGINEERING Kinetics Lecture #9 Enzyme Kinetics: Basic Models Kinetic Theory: Encounter &


  1. 12/8/2011 Updated: 8 December 2011 CEE 670 Kinetics Lecture #9 1 Print version CEE 670 TRANSPORT PROCESSES IN ENVIRONMENTAL AND WATER RESOURCES ENGINEERING Kinetics Lecture #9 Enzyme Kinetics: Basic Models Kinetic Theory: Encounter & Transition Model & IS Effects Clark, 9.6 Brezonik, pp. 130-158 Enzyme Kinetics David A. Reckhow Enzymatic Reactions 2  Many ways of illustrating the steps  Substrate(s) bond to active site  Product(s) form via transition state  Product(s) are released CEE 670 Kinetics Lecture #9 David A. Reckhow 1

  2. 12/8/2011 Note that some Basic Enzyme Kinetics references use k 2 for k -1 , and k 3 for k 2 3  Irreversible k 1 k 2 → E + S ES  E + P ← k- 1  Single intermediate  The overall rate is determined by the RLS, k 2 d [ S ] d [ P ]     r k 2 ES [ ] dt dt  But we don’t know [ES], so we can get it by the SS mass balance d [ ES ]     0 k [ E ][ S ] k [ ES ] k [ ES ]  1 1 2 dt  Again, we only know [E o ] or [E tot ], not free [E], so:       0 k [ E ] [ ES ] [ S ] k [ ES ] k [ ES ]  1 o 1 2 CEE 670 Kinetics Lecture #9 David A. Reckhow Reactants, products and Intermediates 4  Simple Progression of components for simple single intermediate enzyme reaction  Shaded block shows steady state intermediates  Assumes [S]>>[E] t  From Segel, 1975; Enzyme Kinetics CEE 670 Kinetics Lecture #9 David A. Reckhow 2

  3. 12/8/2011 Basic Enzyme Kinetics II 5  And solving for [ES],    k [ ES ][ S ] k [ ES ] k [ ES ] k [ E ][ S ]  1 1 2 1 o k [ E ][ S ]  1 o [ ES ]   k [ S ] k k  1 1 2 [ E ][ S ]  o [ ] ES   k k  [ S ] 1 2 k 1 CEE 670 Kinetics Lecture #9 David A. Reckhow Michaelis-Menten 6  Irreversible k 1 k 2 → E + S ES  E + P ← k- 1  Single intermediate d [ P ]   [ ] r k 2 ES dt [ E ][ S ]  o [ ES ]   k k  [ S ] 1 2 k 1 d [ P ] k [ E ][ S ] r [ S ]    2 o max r    k k dt  K [ S ] [ S ] 1 2 k s 1 CEE 670 Kinetics Lecture #9 David A. Reckhow 3

  4. 12/8/2011 Michaelis Menten Kinetics 7  Classical substrate plot rmax 100 80 Reaction Rate 60 0.5r max 40 K s d [ P ] r [ S ]   max r s  dt K [ S ] 20 0 0 20 40 60 80 100 120 CEE 670 Kinetics Lecture #9 David A. Reckhow Substrate Concentration Substrate and growth 8 d [ P ] d [ S ] 1 dX  If we consider Y     r dt dt Y dt  We can define a microorganism-specific substrate utilization rate, U dX  r   dt  U YX X Y  And the maximum rates are then    max U k max Y  1 d [ S ] k [ S ] 1 d [ X ] [ S ]      max U and s  s  X dt K [ S ] X dt K [ S ] CEE 670 Kinetics Lecture #9 David A. Reckhow 4

  5. 12/8/2011 Linearizations 9  Lineweaver-Burke  Double reciprocal plot Wikipedia version Voet & Voet version CEE 670 Kinetics Lecture #9 David A. Reckhow 10  das CEE 670 Kinetics Lecture #9 David A. Reckhow 5

  6. 12/8/2011 3 types 11  Lineweaver Burk  Hanes  Eadie-Hofstee CEE 670 Kinetics Lecture #9 David A. Reckhow Compare predictions 12  ad CEE 670 Kinetics Lecture #9 David A. Reckhow 6

  7. 12/8/2011 k 1 k 2 k 3 → E + S ES  EP 2  2E + P 2 Multi-step ← k- 1 P 1 13  Double intermediate  Also gives: d [ P ] r [ S ]   max r s  dt K [ S ]  But now:    k k [ E ] k k k    2 3 o 3 1 2 r K s   1   max k k k k k 2 3 2 3  Note what happens when: k 3 >> k 2 CEE 670 Kinetics Lecture #9 David A. Reckhow Activation Energy 14  Activation Energy must always be positive  Unlike ∆ H, which may be positive or negative  Differing reaction rates Activated Complex Activated Complex E a E a Energy Energy reactants reactants       E H E H f f products products Reaction Coordinate Reaction Coordinate CEE 670 Kinetics Lecture #9 David A. Reckhow 7

  8. 12/8/2011 Encounter Theory I 15  Uncharged Solutes  Nature of diffusion in water  Encounter within a solvent cage  Random diffusion occurs through elementary jumps of distance   Molecular Molecular 2 r diameter radius Average time between jumps  2   For a continuous medium: 2  2 or   D  2 D  For a semi-crystalline structure:  6  2  2 or   D  6 D For water, D ~ 1x10 -5 cm 2 s -1 , and � = 4x10 -8 cm, so  ~ 2.5x10 -11 s If time between vibrations is ~ 1.5x10 -13 s, then the average water molecule vibrates 150 times (2.5x10 -11 /1.5x10 -13 ) in its solvent cage before jumping to the next one. CEE 670 Kinetics Lecture #9 David A. Reckhow Encounter Theory II 16  Probability of Encounter  If A and B are the same size as water  They will have 12 nearest neighbors  Probability that “A” will encounter “B” in a solvent cage of 12 neighbors is:  Proportional to the mole fraction of “B”  P 6 X With each new jump, “A’ has 6 new neighbors B A B Where: n # molecules of “B” per cm 3  B X   B   1   3 # molecules of solvent per cm 3   Molecular volume (cm 3 ) Geometric packing factor CEE 670 Kinetics Lecture #9 David A. Reckhow 8

  9. 12/8/2011 Encounter Theory III 17  And combining the rate of movement with the probability of encountering “B”, we get an expression for the rate of   encounter with “B” 1  6 D P   2 A B AB  Then substituting in for the probability  3 6 D ( 6 n ) 1  B   2 AB   36 n D B  For water,  =0.74, and the effective diffusion coefficient, D AB = D A + D B , and � =r AB , the sum of the molecular radii  Then we get: 1  25 r D n  AB AB B AB # of encounters/sec for each molecule of “A ” CEE 670 Kinetics Lecture #9 David A. Reckhow Encounter Theory IV 18  Now the total # of encounters between “A” and “B” per cm 3 per second is: n  25 A r D n n  AB AB A B AB  In terms of moles of encounters (encounter frequency) this becomes:     3 3 cm cm 1000 n 1000       L A L Z 25 r D n n    e , AB   AB AB A B N molecules  N molecules  o Mole o Mole  25 r D [ A ] n AB AB B n B =[B]/N 0 /1000 L/cm 3 cm 2 s -1 M -1 s -1 cm #/Mole   2 Z 2 . 5 x 10 r D N [ A ][ B ] e , AB AB AB 0 CEE 670 Kinetics Lecture #9 David A. Reckhow 9

  10. 12/8/2011 Encounter Theory V 19  Frequency Factor   2 Z 2 . 5 x 10 r D N [ A ][ B ] e , AB AB AB 0 A  When E a = 0, k=A Activated Complex  E a  E a / RT k Ae Energy reactants products Reaction Coordinate CEE 670 Kinetics Lecture #9 David A. Reckhow Transition State Theory I 20  Consider the simple bimolecular reaction    k A B C  Even though it is an elementary reaction, we can break it down into two steps       k A B AB C “Activated Complex”   Where the first “equilibrium” is:   [ AB ] K   [ A ][ B ]  [ AB ] K [ A ][ B ] Activated  So the forward rate is: Complex E a d [ C ]       k [ AB ] k K [ A ][ B ] Energy reactants dt products CEE 670 Kinetics Lecture #9 David A. Reckhow Reaction Coordinate 10

  11. 12/8/2011 Transition State Theory II 21  Now the transition state is just one bond vibration away from conversion to products Frequency of vibration (s -1 ) E vib    Planks Law: h vibrational Planck’s constant (6.62 x 10 -27 ergs·s) energy  Bond energy must be in the thermal region: Temperature (ºK) E bond  Bond kT energy Boltzman constant (1.3807×10 − 16 ergs ºK -1 )  So equating, we get:   kT   h kT h  And since conversion occurs on the next vibration: kT      k k K K h CEE 670 Kinetics Lecture #9 David A. Reckhow Transition State Theory III 22  Now from basic thermodynamics:   G o    G o  RT ln K or K e RT  And also      G o H T S  S e    So: H  K e R RT     kT   And combining: S H  k e R e RT h      Recall:    E H P V H      kT E S a  And substituting back in:    k e R e RT   h A CEE 670 Kinetics Lecture #9 David A. Reckhow 11

Recommend


More recommend