ensemble redrawing in strongly nonlinear systems
play

Ensemble redrawing in strongly nonlinear systems Pavel Sakov 1 Marc - PowerPoint PPT Presentation

Ensemble redrawing in strongly nonlinear systems Pavel Sakov 1 Marc Bocquet 2 3 1 Bureau of Meteorology, Melbourne, Australia 2 Universit e Paris-Est, CEREA, Champs-sur-Marne, France 3 INRIA, Paris Rocquencourt research centre, France EnKF


  1. Ensemble redrawing in strongly nonlinear systems Pavel Sakov 1 Marc Bocquet 2 3 1 Bureau of Meteorology, Melbourne, Australia 2 Universit´ e Paris-Est, CEREA, Champs-sur-Marne, France 3 INRIA, Paris Rocquencourt research centre, France EnKF workshop, Bergen 22-24 May 2013

  2. Outline Motivation (strongly nonlinear systems) Example Some details IEnKF IEnKF with ensemble redrawing EnKF solution space and IEnKF solution Algorithm L40 Addendum On ensemble redrawing in large-scale systems Scaled rotations Conclusions

  3. Motivation: an example with 3-variable Lorenz model

  4. Motivation: an example with 3-variable Lorenz model

  5. Example 1: fast convergence

  6. Example 1: fast convergence

  7. Example 1: fast convergence

  8. Example 1: fast convergence

  9. Example 2: Slower convergence

  10. Example 2: Slower convergence

  11. Example 2: Slower convergence

  12. Example 2: Slower convergence

  13. Example 2: Slower convergence

  14. Example 2: Slower convergence

  15. Example 2: Slower convergence

  16. Example 3: Divergence

  17. Example 3: Divergence

  18. Example 3: Divergence

  19. Example 3: Divergence

  20. Example 3: Divergence

  21. Example 3: Divergence

  22. Example 3: Divergence

  23. IEnKS Lag-L smoother observations observations assimilated at assimilated at previous cycles this cycle obs. model states L−1 L L+1 cycle # 0 1 2 3 updated state

  24. IEnKS (Gauss-Newton, transform) x (0) A (0) = E 0 − x (0) = E 0 1 / m , 0 , w = 0 , T = I 0 0 repeat x 0 = x (0) + A (0) 0 w 0 E 0 = x 0 1 T + A (0) 0 T E L = M 0 → L ( E 0 ) Hx = H ( E L ) 1 / m HA = [ H ( E L ) − Hx ] T − 1 ∇ J = ( HA ) T R − 1 ( y − Hx ) / ( m − 1) + [( A (0) 0 ) T A (0) 0 ] † ( A (0) 0 ) T ( x (0) − x 0 ) 0 M = I + ( HA ) T R − 1 HA / ( m − 1) ∆ w = M − 1 ∇ J w = w + ∆ w T = M − 1 / 2 � ∆ w � < ε until E 1 = M 0 → 1 ( E 0 ) inflate E 1

  25. IEnKS (Gauss-Newton, regression) x (0) A (0) = E 0 − x (0) = E 0 1 / m , 0 , w = 0 , T = I 0 0 repeat x 0 = x (0) + A (0) 0 w 0 E 0 = x 0 1 T + A (0) 0 T E L = M 0 → L ( E 0 ) Hx = H ( E L ) 1 / m HM = HA ( A (0) HA = HM A (0) 0 T ) † , HA = [ H ( E L ) − Hx ] , 0 ∇ J = ( HA ) T R − 1 [ y − Hx + HM ( x 0 − x (0) 0 )] / ( m − 1) M = I + ( HA ) T R − 1 HA / ( m − 1) ∆ w = M − 1 ∇ J w = w + ∆ w T = M − 1 / 2 until � ∆ w � < ε E 1 = M 0 → 1 ( E 0 ) inflate E 1

  26. IEnKS (Gauss-Newton, transform, revisited) x (0) A (0) = E 0 − x (0) = E 0 1 / m , 0 , w = 0 , T = I 0 0 repeat x 0 = x (0) + A (0) 0 w 0 E 0 = x 0 1 T + A (0) 0 T E L = M 0 → L ( E 0 ) Hx = H ( E L ) 1 / m HA = [ H ( E L ) − Hx ] T − 1 ∇ J = ( HA ) T R − 1 ( y − Hx ) / ( m − 1) − w (Bocquet and Sakov, 2012) M = I + ( HA ) T R − 1 HA / ( m − 1) ∆ w = M − 1 ∇ J w = w + ∆ w T = M − 1 / 2 until � ∆ w � < ε E 1 = M 0 → 1 ( E 0 ) inflate E 1

  27. IEnKS: two formulations State space formulation: � ( x 0 − x (0) 0 ) T ( P (0) 0 ) − 1 ( x 0 − x (0) x a 0 = arg min 0 ) { x 0 } + [ y L − H L ( x L )] T ( R L ) − 1 [ y L − H L ( x L )] � , x L = M 0 → L ( x 0 ) Ensemble space formulation: w T w + [ y L − H L ( x L )] T ( R L ) − 1 [ y L − H L ( x L )] � � w = arg min , { w } x L = M 0 → L ( x (0) + A (0) 0 w ) 0 (Equivalence - see Hunt et al. 2007)

  28. EnKF solution space and IEnKF solution ◮ Let A be analysed ensemble anomalies in the EnKF A = A U , where U : U T = I , U 1 = 1 is also a KF ◮ Then ˜ solution w T w + [ y L − H L ( x L )] T ( R L ) − 1 [ y L − H L ( x L )] � � w = arg min , { w } x L = M 0 → L ( x (0) + A (0) 0 w ) 0 A ← AU : w + [ y L − H L ( x L )] T ( R L ) − 1 [ y L − H L ( x L )] � w T ˜ � w = arg min ˜ ˜ , { ˜ w } x L = M 0 → L ( x (0) + A (0) 0 ˜ w ) , 0 ˜ where w ≡ Uw Hence the ensemble redrawing can result in: ◮ A slightly different solution due to estimating the sensitivities from an ensemble of finite spread ◮ Convergence to another minimum due to the different initial state of the system

  29. Algorithm IEnKF cycle with redrawing: repeat < iterate > if < diverged > < re-initialise the cycle > < redraw the forecast ensemble > continue end if until < success >

  30. Algorithm Rolling back: repeat < IEnKF cycle with redrawing > if < failed > < go back > < redraw the analysed ensemble > end if until < success >

  31. Performance with L3

  32. IEnKF: performance log

  33. IEnKF vs. IEnKF-N: baseline peformance

  34. IEnKS-N . . . repeat . . . ∇ J = ( HA ) T R − 1 ( y − Hx ) / ( m − 1) − w becomes ∇ J = ( HA ) T R − 1 ( y − Hx ) / ( m − 1) − m w / ( ε N + w T w ) / ( m − 1) . . . until � ∆ w � < ε E 1 = M 0 → 1 ( E 0 ) inflate E 1 becomes c = ε N + w T w M = m ( c I − 2 ww T ) / c 2 / ( m − 1) + ( HA ) T R − 1 HA / ( m − 1) E 0 = x 0 1 T + A (0) 0 M − 1 / 2 E 1 = M 0 → 1 ( E 0 )

  35. Performance with L40 (global)

  36. Performance with L40 (local)

  37. How bad is going local? EnKF IEnKF/R IEnKF IEnKF-N/R

  38. Inflation: prior or posterior?

  39. IEnKF vs. MDA

  40. Scaled rotations Givens rotation: (col. i ) (col. j )  1 0 . . . 0 . . . 0 . . . 0  0 1 . . . 0 . . . 0 . . . 0     0 0 . . . cos( θ ) . . . − sin( θ ) . . . 0 (row i ) ˆ   U ( i , j , θ ) =   0 0 . . . 0 . . . 0 . . . 0     0 0 . . . sin( θ ) . . . cos( θ ) . . . 0 (row j )   0 0 . . . 0 . . . 0 . . . 1 U T = 1 U ˆ ˆ General rotation: m � ˆ U = U ( i , j , θ ij ) i , j =1; i ≥ j Scaled rotation: m � U ( ε ) = U ( i , j , εθ ij ) , ε ∈ [0 , 1] i , j =1; i ≥ j

  41. Conclusions ◮ Ensemble redrawing is a useful option for iterative schemes ◮ Can be particularly useful in strongly nonlinear situations ◮ It can also be useful to handle occasional instabilities ◮ A system rollback is also often required to achieve positive results ◮ The ensemble redrawing can be localised by using scaled ensemble rotations Other results: ◮ IEnKF-N seems to have a better baseline performance in strongly nonlinear situations ◮ Prior inflation seems to work better than the posterior inflation in stronlgy nonlinear situations ◮ MDA can often perform almost equally with the IEnKF Thank you!

  42. References Bocquet, M., 2011: Ensemble Kalman filtering without the intrinsic need for inflation. Nonlinear Proc. Geoph. , 18 , 735–750. Bocquet, M. and P. Sakov, 2012: Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems. Nonlinear Proc. Geoph. , 19 , 383–399. Emerick, A. A. and A. C. Reynolds, 2013: History matching time-lapse seismic data using the ensemble kalman filter with multiple data assimilations. Computat. Geosci. , 16 , 639–659. Gu, Y. and D. S. Oliver, 2007: An iterative ensemble Kalman filter for multiphase fluid flow data assimilation. SPE Journal , 12 , 438–446. Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D , 230 , 112–126. Sakov, P., D. S. Oliver, and L. Bertino, 2012: An iterative EnKF for strongly nonlinear systems. Mon. Wea. Rev. , 140 , 1988–2004. Yang, S.-C., E. Kalnay, and B. Hunt, 2012: Handling nonlinearity and non-Gaussianity in the Ensemble Kalman Filter: Experiments with the three-variable Lorenz model. Mon. Wea. Rev. , 140 , 2628–2646.

Recommend


More recommend