ensdf analysis and utility codes exercises bricc
play

ENSDF analysis and utility codes Exercises BrIcc / BrIccMixing / - PowerPoint PPT Presentation

ENSDF analysis and utility codes Exercises BrIcc / BrIccMixing / Ruler/Gabs T. Kib di (ANU) Tibor Kibdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, 2018 Installing & running the codes q


  1. ENSDF analysis and utility codes Exercises BrIcc / BrIccMixing / Ruler/Gabs T. Kib è di (ANU) Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, 2018

  2. Installing & running the codes q PATH (variable) PATH is an environment variable on Unix -like operating systems, DOS, OS/2 , and Microsoft Windows, specifying a set of directories where executable programs are located. q Copy executables into a single directory (<myDir>) and add this directory to the PATH: Linux & MacOS add to the .bashsrc or .profile files: export PATH=<myDir>:$PATH Windows: use Control Panel\Environment Variables to add manually q Check if PATH is correctly set. To list ALL environment variables Linux & MacOS: printenv Windows: set q BrIcc & BrIccMixing requires BrIccHome environment variable, the directory, where the ICC (BrIccFOV22.icc) data and index files (BrIccFOV22.idx) are q Pass input/output file names on the command line bricc 99mTc.ens merge <cr> q Default file names convenient, but files will be overwritten! q Consult with terminal dialogue and calculation report files to identify problems! Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  3. Numerical and ascii values in ENSDF q ENSDF: 80 character/line (record or card) ASCII (American Standard Code for Information Interchange) file (ENSD format manual) q 17 record types: Identification, Normalization, Parent, Q-value, Level, Alpha, Beta, EC+beta+, Gamma, Reference, Cross reference, Delayed Particle, Product normalisation, Special record, History, Atomic Relaxation, End records q Often values are given in continuation records: 174Tm2 G FL=123.45 q Fixed length fields. q Value is given as ASCII string to preserve accuracy reported in the original paper q Uncertainty: symmetric, asymmetric, limits, data came from systematics, etc q Uncertainty propagation (see BrIcc manual) q No ENSDF editor available yet for all platforms Redit (Windows) Sergey Lisin (PNPI) Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  4. BrIcc – interactive use element Version & data table Input parameter can be: Ø Transition Energy [keV]: 123; 123.0, 1.23E2 Ø Chemical Symbol [max 2 char]: Os Ø Z+integer [5-110]: Z76 selects Os Ø SUBS: toggles between to show/NOT to show sub shell ICCs Ø DATA table: toggles between “Frozen Orbitals” (BrIccFO) and “No Hole” (BrIccNH) approximations Ø ?: displays information on how to use BrIcc Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  5. BrIcc – interactive use e - -e + pair g -ray 30.07 y electron (PF) 7/2+ 85.1 661.660 M4 0 conversion (CE) ≈ 137 55 Cs Q β− =1175.63 11/2 – 661.660 94.4% 9.6 1 2.552 m L K M 3/2+ 0 5.6% 12.1 stable 137 56 Ba Energetics Gamma E g = E i - E f + T r Q: How many 137 Cs decays will proceed with the emission of K CE E CE,i = E i - E f - E BE,i + T r conversion electrons? E + + E - = E i - E f – 2m o c 2 + T r PF Transition probability l T = l g + l K + l L + l M …… + l PF Conversion coefficient a CE,PF = l CE , PF / / l g = l g x a CE,PF l CE,PF = Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  6. BrIcc – interactive use e - -e + pair g -ray 30.07 y electron (PF) 7/2+ 85.1 661.660 M4 0 conversion (CE) ≈ 137 55 Cs Q β− =1175.63 11/2 – 661.660 94.4% 9.6 1 2.552 m L K M 3/2+ 0 5.6% 12.1 stable 137 56 Ba Energetics Gamma E g = E i - E f + T r Q: How many 137 Cs decays will proceed with the emission of K CE E CE,i = E i - E f - E BE,i + T r conversion electrons? E + + E - = E i - E f – 2m o c 2 + T r PF A: a K = 9.148E-02 Transition probability l K = 94.4%* l K / l T =94.4%* a K /(1+ a T ) l T = l g + l K + l L + l M …… + l PF l K =7.76% Conversion coefficient a CE,PF = l CE , PF / / l g = l g x a CE,PF l CE,PF = Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  7. BrIcc – interactive use 30.07 y 7/2+ 85.1 661.660 M4 0 ≈ 137 55 Cs Q β− =1175.63 11/2 – 661.660 94.4% 9.6 1 2.552 m 3/2+ 0 5.6% 12.1 stable 137 56 Ba Q: How many 137 Cs decays will proceed with the emission of K conversion electrons? A: a K = 9.148E-02 l K = 94.4%* l K / l T =94.4%* a K /(1+ a T ) l K =7.76% Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  8. BrIcc – use as evaluation tool Step 1: calculations Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  9. BrIcc – use as evaluation tool Step 1: calculation report bricc myEnsdf.ens<CR> bricc.lst Uncertainty on ICC q Uncertainty DE q Uncertainty on MR q Flat 1.4% from theory NOTE q Uncertainty on MR may not be symmetric q Total ICC will be inserted into CC field if a T > 1.0E-4 See BrIcc Manual how uncertainties propagated Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  10. BrIcc – use as evaluation tool Step 1: calculations BrIcc verifies G, G-cont cards and generates error messages, if needed: 150GD G 650.33 0 .3 (E2) <E> Invalid uncertainty on transition energy. <E> Invalid uncertainty on transition energy. 181RE G 148.4 2 0.8 3M1 0.13 LT 1.724 17 <E> Invalid mixing ratio. <E> Invalid mixing ratio. Use FMTCHK before running BrIcc! For some Elements and Atomic shells BrIcc energy range is limited: <W> ICC could not be calculated for EG+DEGH above 398.000 keV Extra user information 146SM G 2644.43 5 0.108 3E1+(M2) <I> Mixing ratio empty, assumed to be equal to 1. <I> Mixing ratio empty, assumed to be equal to 1. 246CM G 42.9 2 2 AP E2 <I> Uncertainties on ICC`s from transition energy uncertainty is greater than 1.0%. <I> Uncertainties on ICC`s from transition energy uncertainty is greater than 1.0%. Observe messages on terminal window! Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  11. BrIcc – use as evaluation tool Step 1: new ENSDF records New ENSDF records: Cards.new Comments New CC New S_G cards

  12. BrIcc – use as evaluation tool Step 2: merge new and old cards bricc myEnsdf.ens merge<CR> Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  13. BrIccMixing Z=52 (Te); DataSet: Icc=BrIccFO, BrIccG v2.3b (16-Dec-2014) Dp =+1 Dp =-1 Dp Dp 1.0E+05 E1(K) p L M1 M3 E1 E3 E2(K) E3(K) 1.0E+04 p ’ L’ E2 E4 M2 M4 E4(K) E5(K) 1.0E+03 M1(K) Mixing ratio (MR) M2(K) M3(K) 1.0E+02 M4(K) 𝜀 𝜌 $ 𝑀 $ /𝜌𝑀 = 𝜇 / (𝜌 $ 𝑀 $ ) M5(K) 𝜇 / (𝜌𝑀) 1.0E+01 ICC 1.0E+00 Mixing ratios can be determined from q Gamma-ray angular distributions 1.0E-01 q Gamma-gamma angular correlations 1.0E-02 q Conversion coefficients 1.0E-03 Conversion coefficient for CE and PF 1.0E-04 𝛽(𝜌 $ 𝑀 $ /𝜌𝑀) = 𝛽 𝜌𝑀 + 𝜀 + 𝛽 𝜌′𝑀′ BrIcc grapher 1 + 𝜀 + 1.0E-05 10 100 1000 10000 Transition energy [keV] Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  14. BrIccMixing Z=52 (Te); DataSet: Icc=BrIccFO, BrIccG v2.3b (16-Dec-2014) Mixing ratio (MR) 1.0E+02 E2(K) M1(K) 𝜀 𝐹2/𝑁1 = 𝜇 / (𝐹2) 𝜇 / (𝑁1) 1.0E+01 Conversion coefficient for CE and PF 1.0E+00 𝛽(𝑓𝑦𝑞) = 𝛽 𝑁1 + 𝜀 + 𝛽 𝐹2 1 + 𝜀 + 1.0E-01 ICC a(exp) – experimental ICC, ratio of ICC`s or CE, p intensities 1.0E-02 a(M1), a(E2) – theoretical M1, E2 ICC q d (MR): - ⚭ < d < + ⚭ 1.0E-03 q a ~ d 2 ; sign of d could not be determined from CE data! 1.0E-04 q Sensitivity varies largely with energy, BrIcc grapher multipolarity and shell 1.0E-05 q a (exp) must be between a (M1) and a (E2) 10 100 1000 10000 Transition energy [keV] Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  15. Running BrIccMixing q BrIcc and Gnuplot need to be installed q Prepare ASCII input file q Shell: K,L1,L2,… for ICC values: L1/L2, K/L... ICC ratio; MR mixing rato q Symmetric uncertainties only (no limits, no asymmetric UNC) q Use “#” for comments Header q <E> Error with explanation and line number will be given q Data-Sets can be combined with the “*NEW” command Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  16. BrIcc / BrIccMixing – 90 Y IT 6 6 . 9 9 ) 5 E 3 + 3 ( . 4 0 M 5 E 1 5 8 . . 1 9 7 8 7 + 4 6 682.04 3.19 h 6 9 . 9 9 ) 2 E + ( 1 M 3 5 . 2 0 2 3 − 250 ps 7 202.53 2 − 0 64.10 h 8 90 39 Y 51 Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

  17. BrIcc / BrIccMixing – 90 Y IT Intensity balance at 202.53 keV level: 6 6 . 9 +7+ = 𝐽 / 9 :;< +7+ × 1 + 𝛽 9 :;< × 1 + 𝛽 9 ) 𝐽 / 5 E 3 + 3 ( . 4 0 M 5 E 1 5 8 . . 1 9 7 8 7 + 4 6 682.04 3.19 h 6 9 . 9 9 ) 2 E + ( 1 M 3 5 . 2 0 2 3 − 250 ps 7 202.53 2 − 0 64.10 h 8 90 39 Y 51 With RI and CC from ENSDF IN: 202.53(3) keV M1(+E2), MR=-0.04(4) RI: 106.8+/-0.4 CC: 0.02740+/-0.00030 TI(202): 109.7+/-0.4 OUT: 479.51(5)(3) keV M4(+E5), MR=0.1 LT RI: 99.650+/-0.030 Recalculate with BrIcc! CC: 0.0983 TI(479): 109.446+/-0.033 Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA 2018

Recommend


More recommend