conversion coefficients and atomic radiations in ensdf
play

Conversion coefficients and atomic radiations in ENSDF BrIcc, - PowerPoint PPT Presentation

Conversion coefficients and atomic radiations in ENSDF BrIcc, BrIccMixing and BrIccEmis Tibor Kib di (ANU) Tibor Kibdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018 Heavy Ion


  1. Conversion coefficients and atomic radiations in ENSDF – BrIcc, BrIccMixing and BrIccEmis Tibor Kib è di (ANU) Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

  2. Heavy Ion Accelerator Facility, ANU Canberra 14 UD

  3. Research areas 7 continuing / 8 postdocs ANU HIAS ~20 research students / 60 NEC 14UD tandem electrostatic accelerator commissioned 1975 outside users) Ø Nuclear Structure ( g -ray, conversion HV: up to 15.85 MV electron spectroscopy, hyperfine Max beam on target: ~1 µ A interactions) Beam pulsing: Ø Nuclear Reaction Dynamics 1 ns ON & 106 ns to 1 s OFF Ø Accelerator Mass Spectrometry

  4. Looking for E0`s with a ``pair of glasses” in 12 C to 52 Cr (2018-Apr)

  5. Outline q Calculation of conversion coefficients q Multipole mixing ratios q Electric monopole E0 transitions q Measurements and some aspects of extracting information for ENSDF q Atomic radiations from nuclear decay Practice #3: q BrIcc, BrIccMixing, Ruler, Gabs Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

  6. Outline Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

  7. Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University Selection rules ( p L) momentum carried away EM decay: energy and p = (-1) L+1 for ML p = (-1) L |L-j i | ≲ j f ≲ L+j i Table of isotopes (1996) 1996FiZY R.B. Firestone, V.S. Shirley, for EL 1.428 ns stable 57.7 ps 10.1 ps ~6.7 ps 0.85 ps 28.2 fs 6.2 ps 7.2 ps 1.1 ps 0+ 2+ 4+ 0+ 6+ 2+ 1 – 4+ 3 – 2+ 5 – 3+ 1,2(+) 2+ 4+ Electromagnetic Decay Processes 0 . 1 8 0 4 . 6 1 4 2 0 7 4 . 9 0 1 . 1 0 9 0 8 4 0 . 8 6 0 5 0 . 6 2 0 1 E 6 7 . 0 2 4 9 0 4 . 0 7 E 0 7 8 5 . 5 2 0 6 + 1 1 3 M 0 1 . 3 2 . 1 1 1 0 0 . 2 5 0 2 8 4 . 5 0 1 3 . 2 9 0 5 9 8 . 7 2 2 6 . 1 7 0 5 1 8 . 7 4 0 9 2 0 2 0 7 . 6 9 . 1 1 . 7 3 2 4 2 3 0 8 4 2 . 2 0 0 . 3 3 0 8 2 0 . 1 0 9 6 . E 2 4 2 2 1 6 3 6 + 2 9 3 9 . M 8 0 2 1 1 . 5 6 1 0 + 1 6 E . 8 6 0 6 . 2 1 0 8 5 6 . 1 0 3 . 5 4 5 . 1 1 5 1 0 1 . 8 0 2 6 0 . 7 1 0 2 . 1 7 3 . 6 0 8 4 4 8 M 8 0 2 5 M 1 3 5 1 + . . 4 4 1 E 5 0 8 5 + 1 2 . E 4 E 0 2 1 . 1 9 6 3 ( . + 9 M 2 1 2 152 4 1 ) 62 Sm . 0 3 8 0 4 5 . . 2 9 9 6 6 1 0 7 4 4 . 0 . 7 1 3 E 1 3 3 2 0 9 1 . 6 . 4 3 M 3 2 5 0 6 1 7 3 . 1 5 + 9 6 . E E 1 4 7 2 2 0 9 5 . . 2 0 4 6 Part 1 of 2 9 0 7 0 2 4 1 . 1 . 9 6 4 E 0 7 0 4 1 1 8 0 ( . . 0 1 + E 0 8 M 6 0 2 1 5 6 2 . 1 ( 0 6 + ) 1 . E M 3 4 0 9 2 1 8 2 6 . 6 4 ) 1 . 3 2 2 E 0 4 1 . E 2 1 2 9 + 6 . 2 6 5 M 2 2 3 6 8 1 7 . 9 3 + 8 8 7 E . E 1 7 4 0 5 E 2 1 2 ICTP-IAEA ENSDF workshop, Trieste, October 2018 . 1 . 5 0 9 8 . 3 6 1 E 0 7 . 1 8 8 3 1 0 5 0 . 3 . 6 4 1 8 5 0 3 8 9 . . 0 4 6 E 1 4 7 0 1 2 3 8 . 9 0 . 9 2 E 1 7 7 0 6 2 6 + 8 5 4 3 E E . . 4 7 2 5 7 2 0 + 6 0 . M 2 4 . E 8 9 1 7 3 0 . 4 9 E 2 2 8 2 . 4 4 4 . 1 6 9 2 8 1 . 9 7 8 E 2 2 4 E 2 121.7825 366.4814 1022.962 1041.180 1085.897 1233.876 1292.801 1371.752 810.465 963.376 1221.64 1289.94 684.70 706.96 0 Q EC =1874.1 1.9% 0.85% 1.23% 0.23% 0.06% 21.2% 17.2% 0.62% 0.93% 3 – 13.542 y 152 63 Eu » 72.08% 11.7 11.9 11.4 12.0 12.5 11.2 10.9 9.9 9.8 0

  8. Electromagnetic Decay Processes EM decay: energy and Example (2013Ma77, M.J. Martin, NDSh 114 (2013) 1497): momentum carried away Initial level: 963.358(3) keV, J p =1 - Final level: 810.453(5) keV, J p =2 + Selection rules ( p L) D E=152.905(6) keV, D J=1, Dp =-1 |L-j i | ≲ j f ≲ L+j i E g = 152.77(16) keV; ML=[E1]; L=1 Part 1 of 2 for EL p = (-1) L 1 M 13.542 y 0 + E 2 2 + 3 – 0 p = (-1) L+1 for ML E E 1 M 2 63 Eu » 6 9 152 E + 4 7 8 2 4 8 2 2 + 9 2 7 . 5 9 E E 1 1 . . . . . 9 5 4 6 0 5 M + 4 7 3 8 4 0 6 5 3 8 8 9 4 0 3 6 2 1 2 0 6 3 2 M 7 . 2 3 4 8 6 Q EC =1874.1 6 0 0 1 1 4 . 3 . . . . 2 7 2 9 9 1 1 5 3 2 E 8 0 5 1 . ) 1 8 4 1 ) ) 9 1 6 8 2 6 5 2 E + 4 7 8 1 7 1 2 2 72.08% 2 1 2 4 3 2 2 . 8 . 0 M + 1 8 4 1 0 0 1 2 3 M M 3 . 1 9 M 1 6 0 0 0 0 1 2 8 1 + 2 2 4+ . + + 7 1 2 1 6 6 . . . . . . 1 7 4 4 M 1371.752 0.93% 10.9 ( E E + 0 0 0 0 0 0 2 5 5 7 3 8 2 ( ( 1.1 ps 0 1 1 6 1 1 1 1 2 2 2 2+ 0 3 6 2 2 0 6 . . 0 8 7 E 1292.801 0.62% 11.2 0 8 E E 2 E E 4 1 3 5 1 0 2 0 1 0 0 . 5 2 0 9 6 5 1 3 5 4 E 2 1,2(+) . . . . . . . 5 5 0 4 1 0 0 0 0 0 0 0 2 1 0 0 6 1 8 E 1289.94 9 1 3 . 4 9 E . 1 0 0 . . 5 1 1 1 6 0 7 3 5 4 . . . 6 8 6 3+ . . . 5 4 9 7 1 M 1233.876 17.2% 9.8 1 4 0 0 4 6 8 4 2 5 5 1 E 8 6 1 2 6 . . 8 5 1 . . . + 9 4 5 – 0 9 7 6 6 2 8 . 2 1221.64 1 6 1 7 1 5 1 1 7 5 E 9 6 4 7 3 0 6 3 2 3 . 1 + 2 3 6 3 9 . 3 4 2 0 2 9 . 2 0 6 7 0 1 6 2+ 4 6 8 3 6 E E E . . . 2 4 2 9 1085.897 21.2% 9.9 9 1 0 0 9 0.85 ps 4 1 9 4 0 1 8 . . 3 – 0 1 0 0 9 8 6 1041.180 0.06% 12.5 0 0 4 2 7 9 . . . . 5 7 7 7 0 0 0 0 3 6 . . 4+ 8 2 4 6 9 . 1022.962 0.23% 12.0 1 1 5 ~6.7 ps 7 5 . . . 0 8 3 2 . . 0 0 2 1 1 – 963.376 1 8 4 1 28.2 fs 8 6 4 8 9 4 7 5 3 1 . 0 1 3 1 1 0 2 4 3 8 3 0 3 E E . . . . 2+ 0 0 0 0 810.465 1.23% 11.4 7.2 ps 7 0 3 2 7 9 0 . . 4 2 6+ . 706.96 0 8 6 10.1 ps 6 5 0+ 2 684.70 E 6.2 ps 9 8 9 6 . 4 4 2 2 9 E 4 . 4+ 7 4 366.4814 0.85% 11.9 57.7 ps 2 8 7 . 1 2 1 4 . 8 2+ 2 121.7825 1.9% 11.7 1.428 ns 0+ 0 stable 152 62 Sm Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

  9. Electromagnetic Decay Processes J i p E i EM decay: energy and Gamma-rays E g (1 st order) momentum carried away E g , ML Selection rules ( p L) J f p E f |L-j i | ≲ j f ≲ L+j i for EL p = (-1) L p = (-1) L+1 for ML g -ray Energetics Gamma E g = E i - E f + T r CE E CE,i = E i - E f - E BE,i + T r E + + E - = E i - E f – 2m o c 2 + T r PF Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

  10. Electromagnetic Decay Processes J i p E i EM decay: energy and Gamma-rays E g (1 st order) momentum carried away E g , ML Selection rules ( p L) J f p E f |L-j i | ≲ j f ≲ L+j i Conversion electrons for EL p = (-1) L (2 nd order) p = (-1) L+1 for ML K BE K g -ray L M electron conversion (CE) K L M Energetics Gamma E g = E i - E f + T r CE E CE,i = E i - E f - E BE,i + T r E + + E - = E i - E f – 2m o c 2 + T r PF Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

  11. Electromagnetic Decay Processes J i p E i EM decay: energy and Gamma-rays E g (1 st order) momentum carried away E g , ML Selection rules ( p L) J f p E f |L-j i | ≲ j f ≲ L+j i Conversion electrons for EL p = (-1) L (2 nd order) p = (-1) L+1 for ML K BE K g -ray L M electron Electron-positron pairs conversion (CE) (3 rd order) e - -e + pair e - e + (PF) 2 m o c 2 K L M Energetics Gamma E g = E i - E f + T r CE E CE,i = E i - E f - E BE,i + T r E + + E - = E i - E f – 2m o c 2 + T r PF Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

  12. Electromagnetic Decay Processes J i p E i EM decay: energy and Gamma-rays E g (1 st order) momentum carried away E g , ML Selection rules ( p L) l g J f p E f |L-j i | ≲ j f ≲ L+j i Conversion electrons (CE) for EL p = (-1) L (2 nd order) p = (-1) L+1 for ML K BE K g -ray l K,CE L M electron Electron-positron pairs (PF) conversion (CE) (3 rd order) e - -e + pair e - e + (PF) 2 m o c 2 l PF K L M Transition probability Energetics l T = l g + l K + l L + l M …… + l PF Gamma E g = E i - E f + T r Conversion coefficient CE E CE,i = E i - E f - E BE,i + T r a CE,PF = l CE , PF / l g E + + E - = E i - E f – 2m o c 2 + T r l CE,PF = l g x a CE,PF PF Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University ICTP-IAEA ENSDF workshop, Trieste, October 2018

Recommend


More recommend