electromagnetic radiations from binary black holes
play

Electromagnetic Radiations From Binary Black Holes Shigeo S. Kimura - PowerPoint PPT Presentation

Electromagnetic Radiations From Binary Black Holes Shigeo S. Kimura Center for Particle Astrophys. PSU (IGC Fellow) Dept. Astronomy & Astrophys., PSU Dept. Physics, PSU ref) SSK, S. Z. Takahashi, & K. Toma, 2017, MNRAS, 465, 4406 SSK,


  1. Electromagnetic Radiations From Binary Black Holes Shigeo S. Kimura Center for Particle Astrophys. PSU (IGC Fellow) Dept. Astronomy & Astrophys., PSU Dept. Physics, PSU ref) SSK, S. Z. Takahashi, & K. Toma, 2017, MNRAS, 465, 4406 SSK, K. Murase, P. Meszaros in prep. Collaborators Kenji Toma, Sanemichi Takahashi (Tohoku Univ.) Kohta Murase, Peter Meszaros (PSU)

  2. Outline • Introduction • sub-Energetic Supernovae from Newborn BBHs • Evolution of Accretion Disks in BBHs • Summary

  3. Outline • Introduction • sub-Energetic Supernovae from Newborn BBH • Evolution of Accretion Disks in BBHs • Summary

  4. Detection of GWs LIGO collaboration 16 • LIGO collaboration detected the gravitational waves from merging black holes (BHs) • Revealing existence of BH-BH binaries of M BH ~ 30 M sun

  5. Formation scenarios • Dynamical formation • Binary evolution Belczynski+ 16 Time (Myr) a ( R � ) e Zero-age main sequence Rodriguez+ 16 0.0000 MS 96.2 M � MS 60.2 M � 2,463 0.15 < � Formation in Roche-lobe over fm ow star cluster 3.5445 HG 92.2 M � MS 59.9 M � 2,140 0.00 through 3-body interactions � HG 3.5448 42.3 M � MS 84.9 M � 0.00 or 3,112 CHeB 3.8354 He star 39.0 M � MS 84.7 M � 0.00 3,579 Direct collapse 3.8354 BH 35.1 M � MS 84.7 M � 0.03 3,700 Common envelope 5.0445 BH 35.1 M � CHeB 82.2 M � 0.03 3,780 5.0445 BH 36.5 M � He star 36.8 M � 0.00 43.8 5.3483 BH 36.5 M � He star 34.2 M �� 0.00 45.3 < Direct collapse � � 5.3483 BH 36.5 M � BH 30.8 M � 0.05 47.8 � � < � ~ � = � = � � � � < � � � � ~ � = � = � � �

  6. are important difficult to distinguish these scenarios Electromagnetic Radiations only from GW observations Formation scenarios • Dynamical formation • Binary evolution Time (Myr) a ( R � ) e Zero-age main sequence 0.0000 MS 96.2 M � MS 60.2 M � 2,463 0.15 < � Formation in Roche-lobe over fm ow star cluster 3.5445 HG 92.2 M � MS 59.9 M � 2,140 0.00 through 3-body interactions � HG 3.5448 42.3 M � MS 84.9 M � 0.00 or 3,112 CHeB 3.8354 He star 39.0 M � MS 84.7 M � 0.00 3,579 Direct collapse 3.8354 BH 35.1 M � MS 84.7 M � 0.03 3,700 Common envelope 5.0445 BH 35.1 M � CHeB 82.2 M � 0.03 3,780 5.0445 BH 36.5 M � He star 36.8 M � 0.00 43.8 5.3483 BH 36.5 M � He star 34.2 M �� 0.00 45.3 < Direct collapse � � 5.3483 BH 36.5 M � BH 30.8 M � 0.05 47.8 � � < � ~ � = � = � � � � < � � � � ~ � = � = � � �

  7. Accretion onto BHs Gravitational energy 
 • —> Radiation energy Angular momentum 
 • —> Accretion disk Angular momentum transport • is necessary for continuous accretion 
 —> MHD turbulence made by magnetorotational instability (MRI) Balbus & Hawley 91 Accretion may take place when • BBHs are born and/or merging Suzuki & Inutsuka 14

  8. Outline • Introduction • sub-Energetic Supernovae from Newborn BBH • Evolution of Accretion Disks in BBHs • Summary

  9. Binary Evolution scenario Kinugawa+14, Belczynski+ 16 Time (Myr) a ( R � ) e Zero-age main sequence • massive star binary 
 0.0000 MS 96.2 M � MS 60.2 M � 2,463 0.15 —> Binary Black Hole Roche-lobe over fm ow 3.5445 HG 92.2 M � MS 59.9 M � 2,140 0.00 • First, Primary —> BH • Secondary becomes giant HG 3.5448 42.3 M � MS 84.9 M � 0.00 or 3,112 CHeB —>Common envelope • Ejection of CE 
 3.8354 He star 39.0 M � MS 84.7 M � 0.00 3,579 Direct collapse 3.8354 BH 35.1 M � MS 84.7 M � 0.03 3,700 —> close BH-WR binary • WR collapses to BH 
 Common envelope 5.0445 BH 35.1 M � CHeB 82.2 M � 0.03 3,780 —> BBH formation • Direct Collapse 
 5.0445 BH 36.5 M � He star 36.8 M � 0.00 43.8 5.3483 BH 36.5 M � He star 34.2 M �� 0.00 45.3 = Failed Supernovae Direct collapse 5.3483 BH 36.5 M � BH 30.8 M � 0.05 47.8

  10. Failed Supernovae Nadyozhin 80 ν Lovegrove & Woosley 13 ν ~~~~~~~> outflowing ~~~~~~~> envelope PNS ~~~~~~~> ~~~~~~~> collapsing core ν ν • ProtoNeutron Star forms when massive star collapses • Neutrino loss—> Binding energy decrease 
 —> shock propagation—> envelope ejection ~ 0.01M sun

  11. Bondi-Hoyle Accretion • The primary BH accretes the failed SN ejecta by 
 Bondi-Hoyle accretion rate SSK+ in prep. v a : ejecta velocity v orb : orbital velocity Edgar 04 GM BH R acc = , a + v 2 v 2 orb BH accretion Column r � orb . ~ 4.2x10 25 g/s >> Ṁ Edd ˙ M B-H ≈ 4 π R 2 a + v 2 v 2 acc ρ ej , m

  12. Radiation-driven Outflow • super-Eddington accretion rate 
 • Accreted material —> A radiation-driven outflow forms a disk v/c Jiang+ 2014 Huarte-Espinosa +13 ⭐ wind orbital motion L w ≈ 1 2 f w ˙ M B-H v 2 w . ~ 6.3x10 44 erg/s

  13. Outflow-driven SNe Assumption: Spherical Symmetric Homologas expansion � t � − 3 ρ ej , m ≈ 3 m ej where v a = a/t . 4 π a 3 t arr EoM dE kin = E int dR ej , = v ej . dt t dyn dt Energy eq. dE int = f i L w − E int − L ph , dt t dyn L ph = � rad E int E int = t ph (1 + τ ej ) R ej /c � ˙ M B-H ≈ 4 π R 2 a + v 2 v 2 orb . SSK+ in prep. acc ρ ej , m • Radiation-driven outflow pushes the ejecta 
 E w ~ 1.4x10 49 erg —> sub-energetic supernova

  14. Time Evolution L [erg/s] T [K] v a > v orb v a < v orb 10 42 10 5 t [day] 1 10 1 10 t [day] SSK+ in prep. • Duration: a few days • Temperature: 10 4 — 10 5 K

  15. Light Curve SSK+ in prep. • Event rate: similar to LIGO ~ 10–100 Gpc -3 yr -1 
 —> expected distance ~300 Mpc 
 —> ~22 mag. @ 300 Mpc 
 —> detectable by Current optical transient survey

  16. Caveat • Spherical symmetric treatment is not accurate 
 a) Effect of the outflow on ejecta 
 b) Finite binary separation • To investigate these effect, we need 3D (radiation) hydrodynamic simulation with feedback of outflows from the BH, which might be similar to the galaxy formation simulation with AGN feedback.

  17. Short Summary I Accretion of ejecta onto primary BH produces 
 • a energetic outflows, which leads to sub-energetic SNe Duration of the SNe is a few days, 
 • absolute magnitude is ~ -15 SSK+ in prep. Color is bluer than the usual supernovae •

  18. Outline • Introduction • sub-Energetic Supernovae from Newborn BBH • Evolution of Accretion Disks in BBHs • Summary

  19. EM Counterparts of GWs • Fermi GBM reported possible EM counterparts. Connaughton + 16 • However, some consider this signal is a false alert. Zhang+16, Greiner+16, Xiong 16 • Theoretical studies show possible models. Perna+16, Loab 16, Januik+17 • However, these models seem unlikely. Lyutikov+16, SSK+17, Dai+16 Figure 2. Model-dependent count rates detected as a function of time - ´ - ´

  20. Timescale • The material accretes to BH in the viscous time 
 � r out 1 � 2 t vis = α� K H • The BBH merges in a merger time 
 c 5 R 4 5 ini t mer = M 3 G 3 512 BH • t vis ~ 3x10 4 s << t mer ~ 4x10 15 s @ R ini ~10 12 cm, M~30 Msun 
 —> The material completely accretes to BH if angular momentum is efficiently transported by MHD turbulence

  21. Dead disk model Perna+2016 propose the dead disk model for Fermi GBM event • If the disk cools down and becomes neutral, the MHD turbulence becomes weak, and make a “dead disk” where angular momentum transform is inefficient. Perna+16 a) dead disk survives until t mer < t vis 
 (~1 s before the merger event). 
 b) rapid accretion can produce GRB. � > � ~ = = = ´ a -

  22. Motivation Perna’s model seems to misestimate or ignore 
 i) tidal torque from the companion 
 ii) condition for MRI activation/inactivation 
 iii) mass inflow due to separation decrease We examine the dead disc model, taking account of the above processes more carefully.

  23. Tidal torque Non-Axisymmetric gravity induces torque Ishikawa & Osaki 94 Tidal torque r/R ini Orbits of test particles Radial profile of tidal torque Tidal torque diverges at tidal truncation radius → The disk cannot expand outward beyond there disk BH BH a sep R ini R ini

  24. Disk Evolution in BBH SSK+17 Σ [g/cm 2 ] t vis ~ 3x10 4 s << t mer ~ 4x10 15 s @ R ini ~10 12 cm 
 10 9 —> separation does not change during initial evolution 10 8 10 7 � � � � ∂ Σ ∂ t = 1 ∂ 1 ∂ ν Σ r 3 d Ω r [cm] , 10 10 10 11 r ∂ r dj / dr ∂ r dr m d [M sun ] ˙ e, Q vis = Q rad , Ṁ =0 at r=r out 10 -3 m d = m 0 ( t/t ini ) − 3 / 2 10 -5 Σ = Σ 0 ( t/t ini ) − 3 / 2 ( r/r out ) − 3 / 5 t [1/ Ω ] 10 3 10 1 T = T 0 ( t/t ini ) − 1 ( r/r out ) − 9 / 10

  25. Formation of Dead disk v 2 Condition for MRI activation: A Λ = > 1 , η Ω K Saha’s equation � 2 π m e k B T Ohmic resistivity � 3 / 2 χ 2 tion discs, where the Ohm � � = 1 − E i e exp , e cm 2 s − 1 ( η = 234 ( T / 1K ) 1 / 2 χ − 1 h 2 1 − χ e n k B T 2 2 c 2 Blae+94 T > T dead ~3000K Thermal equilibrium curves Lasota‘01 Thermal instability@T~ 40000K 
 —> rapid temperature drop to T<T dead Dead disk formation Bell&Lin 94 m dead ~ 5x10 -7 M sun t dead ~ a few years

Recommend


More recommend