electronic materials and extreme conditions
play

Electronic Materials and Extreme Conditions J. Paul Attfield - PowerPoint PPT Presentation

Electronic Materials and Extreme Conditions J. Paul Attfield School of Chemistry and Centre for Science at Extreme Conditions (CSEC), University of Edinburgh High temperature superconductors (1986-) Superconductivity correlated motion


  1. Electronic Materials and Extreme Conditions J. Paul Attfield School of Chemistry and Centre for Science at Extreme Conditions (CSEC), University of Edinburgh

  2. High temperature superconductors (1986-) Superconductivity – correlated motion Compound Tc (K) of electron pairs below a critical temperature (Tc), characterised by Nb3Ge 23 zero electrical resistance and perfect PbMo 6S8 16 diamagnetism; LiTi2O4 13 Ba0.6K0.4BiO3 30 Low-Tc era 1911-1986 HgBa2Ca2Cu3O8+ δ 136 - metals and alloys (ET)2Cu(NCS)2* 13 High-Tc era 1986- Cs 3 C60 34 - copper oxides (etc) Li 0.2 HfNCl 25 MgB 2 39 S S S S * ET = S S

  3. CMR Manganese oxides (1995-) La 0.7 Ca 0.3 MnO 3 - ferromagnetic and conducting  Colossal Magnetoresistances (CMR) for sensors, spintronic devices etc. La 0.5 Ca 0.5 MnO 3 - nonmagnetic (antiferromagnetic) and insulating  localisation and long range order of; • charges (Mn 3+ /Mn 4+ states), • d-orbitals (Mn 3+ Jahn-Teller distortion) • spins (Mn 3+ /Mn 4+ magnetic moments)

  4. High Pressure Perovskites SrCrO 3 SrCrO 3 PbRuO 3 Orbitally driven phase separation ‘Hard-soft’ Symmetry-reversing orbital transition synthesis  SrCrO 2.80  SrCrO 2.75 Arevalo et al ACIE 2012 Ortega San Martin et al, PRL 2007 Kimber et al, PRL 2009 BiNiO 3 (Kyoto) MnVO 3 Colossal NTE Helimagnetic A site spin order Bi 0.95 La 0.05 NiO 3 Azuma et al, Nature Comm. 2011 Markkula et al, PRB 2011

  5. The Verwey Structure of Magnetite (Fe 3 O 4 ) Mark Senn, Jon Wright & JPA, Nature (2012)

  6. Magnetite and magnetism biomagnetism lodestones compass geomagnetism ferrites spintronics

  7. Low temperature properties – the Verwey transition Verwey, E. J. W. (1939). "Electronic • Evidenced by a first order transition in conduction of magnetite (Fe 3 O 4 ) and its resistivity, heat capacity and transition point at low temperatures." Nature 144 : 327-328. magnetisation at 125 K • Complex superstructure Fe 2+ Fe 3+ Fe 3+ [Fe 2.5+ ] 2 O 4 →Fe 3+ [Fe 2+ Fe 3+ ]O 4 Fe 3+ Theoretical approaches: • Verwey (1939) Fe 2+ /Fe 3+ charge order (Verwey model, 1946) • Order-disorder of 2 electron-B 4 tetrahedra (Anderson, 1956) • CO from U/W band instability (Cullen & Callen, 1970) • Polaron (bi-, molecular-) CO (Mott, Chakraverty, Yamada 1970-1980) • Bond-dimerisation (no CO) - Fe 2 5+ dimers (Seo, Khomskii 2002-)

  8. Full structure solution (Senn, Wright, JPA) 2006-2012 Use microcrystals from previous powder (Fe 3-3d O 4 , d < 0.0001 - Prof. J. Honig): • Twinning, multiple scattering, extinction problems reduced by using microcrystallites. • Microcrystal beamline ID11@ESRF - 100 μm focused monochromatic beam. Hard X-rays (74 keV, λ = 0.16653(1) Å) reduces absorption, accesses high Q. • • Magnetic alignment (~1 T field from permanent magnet while cooling through T V ) • Refinement software for twinned crystals (SHELXL) • Try many microcrystals – be lucky h = 50 (hkl) sections Best microcrystal:  • approx. spherical, ~40 μm • two twins at 90 K, 89:11 • Cc structure determined using 91,433 unique Bragg intensities • model uniqueness checked against 2,000 randomised starting models Second best microcrystal:  • irregular, ~100 μm • four twins • refined structure same as above

  9. Electronic order in the Verwey state of magnetite ….and orbital order Fe 2+ /Fe 3+ charge of Fe 2+ states…. order to first approximation Trimeron order. ….but Fe 2+ ions also Significance? weakly bonded to two •Ground state neighbours – unexpected, not simple trimeron units. charge order. •Prevalence of orbital molecules (trimerons)? •Dynamics above 125K?

  10. Thanks Wei-Tin Chen Lucy Clark Shigeto Hirai Andrea Marcinkova Mikael Markkula George Penny Marek Senn Alex Sinclair Congling Yin Minghui Yang Angel Arevalo-Lopez Anna Kusmartseva Martin Misak Jenny Rodgers

Recommend


More recommend