mathematics
play

MATHEMATICS 1 CONTENTS Extreme values in one dimension Extreme - PowerPoint PPT Presentation

Extreme values in two dimensions BUSINESS MATHEMATICS 1 CONTENTS Extreme values in one dimension Extreme values in two dimensions Modified second-order conditions Example Old exam question Further study 2 EXTREME VALUES IN TWO


  1. Extreme values in two dimensions BUSINESS MATHEMATICS 1

  2. CONTENTS Extreme values in one dimension Extreme values in two dimensions Modified second-order conditions Example Old exam question Further study 2

  3. EXTREME VALUES IN TWO DIMENSIONS 3

  4. EXTREME VALUES IN ONE DIMENSION Consider a smooth function 𝑔 𝑦 1. Necessary first-order condition for extreme value 𝑒𝑔 𝑦 = 0 β‡’ stationary point 𝑒𝑦 2. Sufficient second-order condition at stationary point 𝑒 2 𝑔 𝑦 < 0 β‡’ maximum β–ͺ 𝑒𝑦 2 𝑒 2 𝑔 𝑦 > 0 β‡’ minimum β–ͺ 𝑒𝑦 2 𝑒 2 𝑔 𝑦 β–ͺ = 0 β‡’? 𝑒𝑦 2 4

  5. EXTREME VALUES IN ONE DIMENSION Consider a smooth function 𝑔 𝑦 1. Necessary first-order condition for extreme value 𝑒𝑔 𝑦 = 0 β‡’ stationary point 𝑒𝑦 2. Sufficient second-order condition at stationary point 𝑒 2 𝑔 𝑦 < 0 β‡’ maximum β–ͺ 𝑒𝑦 2 𝑒 2 𝑔 𝑦 > 0 β‡’ minimum β–ͺ 𝑒𝑦 2 𝑒 2 𝑔 𝑦 β–ͺ = 0 β‡’? 𝑒𝑦 2 5

  6. EXERCISE 1 Given is 𝑔 𝑦, 𝑧 = 2𝑦𝑧 βˆ’ 2x + y βˆ’ 2 Find the stationary points. 6

  7. EXTREME VALUES IN TWO DIMENSIONS In some cases: true (maximum) 8

  8. EXTREME VALUES IN TWO DIMENSIONS In other cases: false (saddle point) 9

  9. MODIFIED SECOND-ORDER CONDITIONS Additional sufficient second-order condition for extreme point πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 β–ͺ not > 0 and > 0 πœ–π‘¦ 2 πœ–π‘§ 2 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 β–ͺ nor < 0 and < 0 πœ–π‘¦ 2 πœ–π‘§ 2 But….. 10

  10. MODIFIED SECOND-ORDER CONDITIONS 1. Testing for extreme point: 2 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 βˆ’ > 0 πœ–π‘¦ 2 πœ–π‘§ 2 πœ–π‘¦πœ–π‘§ 2 > 0 or 𝑔 [ 𝑔 𝑧𝑦 > 0 ] 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 𝑔 𝑦𝑧 11

  11. MODIFIED SECOND-ORDER CONDITIONS 1. Testing for extreme point: Recall that 𝑔 𝑦𝑧 = 𝑔 𝑧𝑦 2 2 = 𝑔 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 so that 𝑔 𝑦𝑧 𝑔 𝑦𝑧 𝑧𝑦 βˆ’ > 0 πœ–π‘¦ 2 πœ–π‘§ 2 πœ–π‘¦πœ–π‘§ 2 > 0 or 𝑔 [ 𝑔 𝑧𝑦 > 0 ] 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 𝑔 𝑦𝑧 12

  12. MODIFIED SECOND-ORDER CONDITIONS 1. Testing for extreme point: 2 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 βˆ’ > 0 πœ–π‘¦ 2 πœ–π‘§ 2 πœ–π‘¦πœ–π‘§ 2 > 0 or 𝑔 [ 𝑔 𝑧𝑦 > 0 ] 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 𝑔 𝑦𝑧 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 2. Then, maximum point: < 0 or < 0 πœ–π‘¦ 2 πœ–π‘§ 2 [ 𝑔 𝑦𝑦 < 0 or 𝑔 𝑧𝑧 < 0 ] πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 minimum point: > 0 or > 0 πœ–π‘¦ 2 πœ–π‘§ 2 [ 𝑔 𝑦𝑦 > 0 or 𝑔 𝑧𝑧 > 0 ] 13

  13. EXAMPLE Consider 𝑔 𝑦, 𝑧 = 𝑦 2 βˆ’ 𝑦𝑧 + 𝑧 2 βˆ’ 4𝑧 + 5 1. Finding stationary points: πœ–π‘” β–ͺ πœ–π‘¦ = 2𝑦 βˆ’ 𝑧 = 0 πœ–π‘” β–ͺ πœ–π‘§ = βˆ’π‘¦ + 2𝑧 βˆ’ 4 = 0 Result: 𝑦, 𝑧 = 4 3 , 8 3 14

  14. EXAMPLE CONTINUTED 2. Second-order test for 𝑦, 𝑧 = 3 : 4 3 , 8 2 πœ– 2 𝑔 πœ– 2 𝑔 πœ– 2 𝑔 = 2 Γ— 2 βˆ’ βˆ’1 2 = 3 πœ–π‘§ 2 βˆ’ πœ–π‘¦ 2 πœ–π‘¦πœ–π‘§ So 3 , 8 4 3 is an extreme point. 15

  15. EXAMPLE CONTINUTED 2. Second-order test for 𝑦, 𝑧 = 3 : 4 3 , 8 2 πœ– 2 𝑔 πœ– 2 𝑔 πœ– 2 𝑔 = 2 Γ— 2 βˆ’ βˆ’1 2 = 3 πœ–π‘§ 2 βˆ’ πœ–π‘¦ 2 πœ–π‘¦πœ–π‘§ So 4 3 , 8 3 is an extreme point. πœ– 2 𝑔 Further πœ–π‘¦ 2 = 2 > 0 , so 4 3 is a minimum point with minimum value 𝑔 3 , 8 4 3 , 8 3 = βˆ’ 1 3 16

  16. EXAMPLE CONTINUTED 2. Second-order test for 𝑦, 𝑧 = 3 : 4 3 , 8 2 πœ– 2 𝑔 πœ– 2 𝑔 πœ– 2 𝑔 = 2 Γ— 2 βˆ’ βˆ’1 2 = 3 πœ–π‘§ 2 βˆ’ πœ–π‘¦ 2 πœ–π‘¦πœ–π‘§ So 4 3 , 8 3 is an extreme point. πœ– 2 𝑔 Further πœ–π‘¦ 2 = 2 > 0 , so 4 3 is a minimum point with minimum value 𝑔 3 , 8 4 3 , 8 3 = βˆ’ 1 3 17

  17. MODIFIED SECOND-ORDER CONDITIONS Other cases 2 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 β–ͺ < 0 β‡’ saddle point βˆ’ πœ–π‘¦ 2 πœ–π‘§ 2 πœ–π‘¦πœ–π‘§ 2 < 0 ] [ 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 2 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 = 0 β‡’? (no conclusion from this method) β–ͺ βˆ’ πœ–π‘¦ 2 πœ–π‘§ 2 πœ–π‘¦πœ–π‘§ 2 = 0 ] [ 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 18

  18. EXTREME VALUES IN TWO DIMENSIONS In other cases: false (saddle point) 19

  19. SUMMARY OPTIMALITY CONDITIONS 1. First-order conditions for a stationary point: 𝑦 = 0 and 𝑔 𝑔 𝑧 = 0 2. Second-order conditions (for solutions to 1.): 2 > 0 β‡’ yes, this is an extreme point 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 2.a 𝑦𝑦 < 0 β‡’ maximum (or 𝑔 𝑧𝑧 < 0 ) 𝑔 2.b 𝑦𝑦 > 0 β‡’ minimum (or 𝑔 𝑧𝑧 > 0 ) 𝑔 2 < 0 β‡’ saddle point 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 2 = 0 β‡’ ?(no conclusion) 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 20

  20. EXERCISE 2 Given is 𝑔 𝑦, 𝑧 = 2𝑦𝑧 2 βˆ’ 4𝑦 2 𝑧 3 . Determine the formula for distinguishing extreme values from other stationary points. 21

  21. EXAMPLE Consider the function 𝑔 𝑦, 𝑧 = 1 2 𝑦 2 𝑓 𝑧 βˆ’ 1 3 𝑦 3 βˆ’ 𝑧𝑓 3𝑧 3 and 𝑓 βˆ’ 1 1 1 Are 0, βˆ’ 6 extreme points of 𝑔 ? 6 , βˆ’ What is the nature of the extreme points? 23

  22. EXAMPLE CONTINUED First, use first-order conditions to verify stationary points πœ–π‘” πœ–π‘¦ = 𝑦𝑓 𝑧 βˆ’ 𝑦 2 β–ͺ πœ–π‘” 2 𝑦 2 𝑓 𝑧 βˆ’ 𝑓 3𝑧 βˆ’ 3𝑧𝑓 3𝑧 1 β–ͺ πœ–π‘§ = Then check the nature of these points (if any) with the second-order conditions πœ– 2 𝑔 πœ–π‘¦ 2 = 𝑓 𝑧 βˆ’ 2𝑦 β–ͺ πœ– 2 𝑔 1 2 𝑦 2 𝑓 𝑧 βˆ’ 6𝑓 3𝑧 βˆ’ 9𝑧𝑓 3𝑧 β–ͺ πœ–π‘§ 2 = πœ– 2 𝑔 πœ–π‘¦πœ–π‘§ = 𝑦𝑓 𝑧 β–ͺ 24

  23. OLD EXAM QUESTION 23 April 2015, Q2c 25

  24. OLD EXAM QUESTION 10 December 2014, Q2b 26

  25. FURTHER STUDY Sydsæter et al. 5/E 13.1-13.3 Tutorial exercises week 4 local extreme value 27

More recommend