Effective Field Theories for Quarkonium recent progress Antonio Vairo Technische Universit¨ at M¨ unchen
Outline 1. S cales and EFTs for quarkonium at zero and finite temperature 2.1 S tatic energy at zero temperature 2.2 C harmonium radiative transitions 2.3 B ottomoniun thermal width 3. C onclusions
Scales and EFTs
Scales Quarkonia, i.e. heavy quark-antiquark bound states, are systems characterized by hierarchies of energy scales. These hierarchies allow systematic studies. They follow from the quark mass M being the largest scale in the system: • M ≫ p • M ≫ Λ QCD • M ≫ T ≫ other thermal scales
The non-relativistic expansion • M ≫ p implies that quarkonia are non-relativistic and characterized by the hierarchy of scales typical of a non-relativistic bound state: M ≫ p ∼ 1 /r ∼ Mv ≫ E ∼ Mv 2 The hierarchy of non-relativistic scales makes the very difference of quarkonia with heavy-light mesons, which are just characterized by the two scales M and Λ QCD . Systematic expansions in the small heavy-quark velocity v may be implemented at the Lagrangian level by constructing suitable effective field theories (EFTs). ◦ Brambilla Pineda Soto Vairo RMP 77 (2004) 1423
Non-relativistic Effective Field Theories LONG−RANGE SHORT−RANGE ◦ Caswell Lepage PLB 167(86)437 QUARKONIUM QUARKONIUM / QED ◦ Lepage Thacker NP PS 4(88)199 QCD/QED ◦ Bodwin et al PRD 51(95)1125, ... M perturbative matching perturbative matching ◦ Pineda Soto PLB 420(98)391 µ ◦ Pineda Soto NP PS 64(98)428 ◦ Brambilla et al PRD 60(99)091502 Mv NRQCD/NRQED ◦ Brambilla et al NPB 566(00)275 ◦ Kniehl et al NPB 563(99)200 µ ◦ Luke Manohar PRD 55(97)4129 ◦ Luke Savage PRD 57(98)413 non−perturbative perturbative matching Mv 2 ◦ Grinstein Rothstein PRD 57(98)78 matching ◦ Labelle PRD 58(98)093013 ◦ Griesshammer NPB 579(00)313 pNRQCD/pNRQED ◦ Luke et al PRD 61(00)074025 ◦ Hoang Stewart PRD 67(03)114020, ...
The perturbative expansion • M ≫ Λ QCD implies α s ( M ) ≪ 1 : phenomena happening at the scale M may be treated perturbatively. We may further have small couplings if Mv ≫ Λ QCD and Mv 2 ≫ Λ QCD , in which case α s ( Mv ) ≪ 1 and α s ( Mv 2 ) ≪ 1 respectively. This is likely to happen only for the lowest charmonium and bottomonium states. 1 0.8 The different quarkonium radii provide 0.6 different measures of the transition Α � 1 � r � 0.4 from a Coulombic to a confined bound state. 0.2 J/ψ , Υ ′ Υ 0.1 0.15 0.2 0.25 r � fm �
The thermal expansion • M ≫ T implies that quarkonium remains non -relativistic also in the thermal bath. T ≫ other thermal scales implies a hierarchy also in the thermal scales. Different quarkonia will dissociate in a medium at different temperatures, providing a thermometer for the plasma. ◦ Matsui Satz PLB 178 (1986) 416 ◦ CMS 1012.5545, CMS-HIN-10-006
Thermal non-relativistic Effective Field Theories T=0 M>T>Mv Mv>T QCD M T NRQCD NRQCD Mv HTL T m D Mv 2 pNRQCD pNRQCD HTL pNRQCD HTL m D ◦ Laine Philipsen Romatschke Tassler JHEP 0703 (2007) 054 ◦ Beraudo Blaizot Ratti NPA (2008) 806 ◦ Escobedo Soto PRA 78 (2008) 032520 ◦ Brambilla Ghiglieri Vairo Petreczky PRD 78 (2008) 014017, ...
Physics at the scale M : annihilation and production Quarkonium annihilation and production happens at the scale M . The suitable EFT is NRQCD. �� �� × c ( α s ( M ) , µ ) �� �� �� �� ... �� �� ... ... ... �� �� QCD NRQCD The effective Lagrangian is organized as an expansion in 1 /M and α s ( M ) : c n ( α s ( M ) , µ ) � × O n ( µ, Mv, Mv 2 , ... ) L NRQCD = M n n ◦ see talk by Mathias Butensch¨ on
Physics at the scale Mv : bound state formation Quarkonium formation happens at the scale Mv . The suitable EFT is pNRQCD. + ... ... ... + + + + ... ... ... 1 E − p 2 /m − V ( r, µ ′ , µ ) NRQCD pNRQCD The effective Lagrangian is organized as an expansion in 1 /M , α s ( M ) and r : c n ( α s ( M ) , µ ) � × V n,k ( r, µ ′ , µ ) r k × O k ( µ ′ , Mv 2 , ... ) � � d 3 r L pNRQCD = M n n k • V n, 0 are the potentials in the Schrödinger equation. • V n,k � =0 are the couplings with the low -energy degrees of freedom, which provide corrections to the potential picture.
Physics of the quarkonium ground state • c and b masses at NNLO, N 3 LO ∗ , NNLL ∗ ; • B c mass at NNLO; • B ∗ c , η c , η b masses at NLL; • Quarkonium 1 P fine splittings at NLO; • Υ(1 S ) , η b electromagnetic decays at NNLL; • Υ(1 S ) and J/ψ radiative decays at NLO; • Υ(1 S ) → γη b , J/ψ → γη c at NNLO; • t ¯ t cross section at NNLL; • QQq and QQQ baryons: potentials at NNLO, masses, hyperfine splitting, ... ; • Thermal effects on quarkonium in medium: potential, masses (at mα 5 s ), widths, ...; • ... ◦ for reviews QWG coll. Heavy Quarkonium Physics CERN Yellow Report CERN-2005-005 QWG coll. Eur. Phys. J. C71 (2011) 1534
Weakly coupled pNRQCD The suitable EFT for the quarkonium ground states is weakly coupled pNRQCD, because mv ∼ mα s ≫ mv 2 ∼ mα 2 s > ∼ Λ QCD • The degrees of freedom are quark -antiquark states (color singlet S, color octet O), low energy gluons and photons, and light quarks. • i∂ 0 − p 2 � � � � d 3 r Tr S † L pNRQCD = m + · · · − V s S iD 0 − p 2 � � � +O † m + · · · − V o O n f − 1 µν F µν a − 1 4 F µν F µν + � 4 F a q i iD ¯ / q i + ∆ L i =1 • At leading order in r , the singlet S satisfies the QCD Schrödinger equation with potential V s .
Dipole interactions ∆ L describes the interaction with the low -energy degrees of freedom, which at leading order are dipole interactions � � d 3 r Tr V A O † r · g E S + · · · ∆ L = + 1 � � S † , σ · g B 2 m V 1 O + · · · + V em S † r · ee Q E em S + · · · A � + 1 � S † , σ · ee Q B em � 2 m V em S + . . . 1
Static energy and potential at T = 0
The static potential in perturbation theory dz µ A µ � = e ig + + ... NRQCD pNRQCD � ∞ = V s ( r, µ ) − i g 2 i dt e − it ( V o − V s ) � Tr( r · E ( t ) r · E (0)) � ( µ ) + . . . V 2 lim T ln A N c T →∞ 0 [chromoelectric dipole interactions] The µ dependence cancels between the two terms in the right-hand side: • V s ∼ ln rµ, ln 2 rµ , ... ultrasoft contribution ∼ ln( V o − V s ) /µ, ln 2 ( V o − V s ) /µ, ... ln rµ, ln 2 rµ, ... •
• The static Wilson loop is known up to N 3 LO. ◦ Schr¨ oder PLB 447 (1999) 321 Brambilla Pineda Soto Vairo PRD 60 (1999) 091502 Brambilla Garcia Soto Vairo PLB 647 (2007) 185 Smirnov Smirnov Steinhauser PLB 668 (2008) 293 Anzai Kiyo Sumino PRL 104 (2010) 112003 Smirnov Smirnov Steinhauser PRL 104 (2010) 112002 • The octet potential is known up to NNLO. ◦ Kniehl Penin Schr¨ oder Smirnov Steinhauser PLB 607 (2005) 96 • V A = 1 + O ( α 2 s ) . ◦ Brambilla Garcia Soto Vairo PLB 647 (2007) 185 • The chromoelectric correlator � Tr( r · E ( t ) r · E (0)) � is known up to NLO. ◦ Eidem¨ uller Jamin PLB 416 (1998) 415
The static potential at N 4 LO � α s (1 /r ) � � 2 α s (1 /r ) α s (1 /r ) V s ( r, µ ) = − C F 1 + a 1 + a 2 r 4 π 4 π � 16 π 2 � � α s (1 /r ) � 3 C 3 + A ln rµ + a 3 3 4 π � � α s (1 /r ) � 4 � � � 4 + 16 � ln 2 rµ + 9 π 2 C 3 a L 2 a L + A β 0 ( − 5 + 6 ln 2) ln rµ + a 4 4 4 π
The static potential at N 3 LL V s ( r, µ ) = V s ( r, 1 /r ) + 2 3 C F r 2 [ V o ( r, 1 /r ) − V s ( r, 1 /r )] 3 � 2 � ln α s ( µ ) × α s (1 /r ) + η 0 [ α s ( µ ) − α s (1 /r )] β 0 � − 5 n f + C A (6 π 2 + 47) η 0 = 1 � − β 1 + 12 �� 2 β 2 π β 0 108 0 ◦ Pineda Soto PLB 495 (2000) 323 ◦ Brambilla Garcia Soto Vairo PRD 80 (2009) 034016
Static quark-antiquark energy at N 3 LL E 0 ( r ) = V s ( r, µ ) + Λ s ( r, µ ) + δ US ( r, µ ) Λ s ( r, µ ) = N s Λ + 2 C F ( N o − N s )Λ r 2 [ V o ( r, 1 /r ) − V s ( r, 1 /r )] 2 � 2 ln α s ( µ ) � × α s (1 /r ) + η 0 [ α s ( µ ) − α s (1 /r )] β 0 C 3 1 α s ( µ ) � − 2 ln α s (1 /r ) N c + 5 � A α 3 δ US ( r, µ ) = C F s (1 /r ) 3 − 2 ln 2 24 r π 2 r µ N s , N o are two arbitrary scale -invariant dimensionless constants Λ is an arbitrary scale-invariant quantity of dimension one
Static quark-antiquark energy at N 3 LL vs lattice 0.0 latt. � r min �� � 0.5 r 0 � E 0 � r � � E 0 � r min � � E 0 � 1.0 � 1.5 0.15 0.20 0.25 0.30 0.35 0.40 0.45 r � r 0 ◦ Brambilla Garcia Soto Vairo PRL 105 (2010) 212001 quenched lattice data from Necco Sommer NPB 622 (2002) 328 • Perturbation theory (known up to NNNLO) + renormalon subtraction describes well the static potential up to about 0.25 fm ( r 0 ≈ 0 . 5 fm). • Indeed one can use this to extract Λ MS r 0 = 0 . 622 +0 . 019 − 0 . 015 and in perspective r 0 (high precision unquenched lattice data is needed).
Radiative transitions
Recommend
More recommend