c e r n eth zurich Adrián Carmona Supported by a Marie Skłodowska-Curie Individual Fellowship MSCA-IF-EF-2014 September 13, 2016 Slide 1/26 Bridging the UV and the IR at the loop level ERC workshop on Effective Field Theories for Collider Physics Flavor Phenomena and EWSB
The LHC has proven another model to be right, the Kübler-Ross one 1 Denial They did not publish yet the spin-2 analysis! 2 Anger Damned experimentalists! Enough of ambulance-chasing! 3 Bargaining 4 Depression The fjeld is dying! 5 Acceptance The 750 Stages of Grief A simple 2 σ anomaly would be enough!
The LHC has proven another model to be right, the Kübler-Ross one 1 Denial They did not publish yet the spin-2 analysis! 2 Anger Damned experimentalists! Enough of ambulance-chasing! 3 Bargaining 4 Depression The fjeld is dying! 5 Acceptance There are plenty of reasons for NP; it could just be beyond the direct LHC reach! The 750 Stages of Grief A simple 2 σ anomaly would be enough!
The LHC has proven another model to be right, the Kübler-Ross one 1 Denial They did not publish yet the spin-2 analysis! 2 Anger Damned experimentalists! Enough of ambulance-chasing! 3 Bargaining 4 Depression The fjeld is dying! 5 Acceptance There are plenty of reasons for NP; it could just be beyond the direct LHC reach! The 750 Stages of Grief A simple 2 σ anomaly would be enough! KEEP CALM AND SEARCH FOR NP
allows us to search for NP in a model independent way! compatible with the observed symmetries and dof the bottom-up approach EFT as a discovery tool • In its search for NP, the LHC indicates the existence of a non-negligible mass gap v ≪ Λ • We can therefore write the most general non-renormalizable L L eff = L (4) + 1 Λ L (5) + 1 Λ 2 L (6) + 1 Λ 3 L (7) + . . . • Mapping experimental observables to the Wilson coeffjcients in L eff • We dispose nowadays of an impressive fjt of the SM EFT to data (EWPD, LHC data, …) Ciuchini, Franco, Mishima, Silvestrini, '13; de Blas, Chala, Santiago, '13,'15; Pomarol, Riva, '14, Pruna, Signer, '14; Falkowski, Riva, '15; Buckley, Englert, Ferrando, Miller, Moore, Russel, White, '15; Berthier, Trott, '15; Aebischer, Crivellin, Fael, Greub, '15; Ghezzi, Gomez-Ambrosio, Passarino, Uccirati, '15; Hartman, Trott, '15; David, Passarino, '15; Boggia, Gomez-Ambrosio, Passarino, '16; de Blas, Ciuchini, Franco, Mishima, Pierini, Reina, Silvestrini, '16;…
the top-down approach EFT as a discovery tool matching running
automated one-loop matching in efgective fjeld theories Outline • UV/IR tree-level dictionary • UV/IR one-loop dictionary • Efgective Lagrangian at one loop: functional methods and matching • MatchMaker Anastasiou, AC, Lazopoulos, Santiago, to appear soon • Conclusions
We can perform the tree-level matching for the following Lagrangian by using equations of motion and which leads to Tree Level Matching − D 2 − m 2 Φ+ O (Φ 3 ) L UV ( φ, Φ) = L SM ( φ )+[Φ † F ( φ )+ h . c . ]+Φ † [ ] φ − U ( φ ) D 2 + m 2 Φ c = F ( φ ) + O (Φ 2 [ ] Φ + U ( φ ) c ) 1 1 Φ c = Φ + UF = D 2 + m 2 Φ ( D 2 + U ) 1 + m − 1 m 2 [ ] F Φ 1 1 ( D 2 + U ) 1 1 ( D 2 + U ) 1 ( D 2 + U ) 1 = − F + F + . . . m 2 m 2 m 2 m 2 m 2 m 2 Φ Φ Φ Φ Φ Φ L tree eff = L UV ( φ, Φ c (Φ))
N Y D U N Dirac Dirac/Majorana Dirac D U X Dirac Dirac Dirac/Majorana D Irrep We already have a tree-level dictionary for non-mixed contributions! Spinor U X Irrep Leptons D U N D U E Y Tree Level Matching ( ) ( ) ( ) Q ( m ) (3 , 1) 2 (3 , 1) − 1 (3 , 2) 1 (3 , 2) 7 (3 , 2) − 5 (3 , 3) 2 (3 , 3) − 1 3 3 6 6 6 3 3 New Quarks: del Aguila, Perez-Victoria, Santiago, '00 E + E − ( N ) ( ) E − E − E −− E − E −− (1 , 1) 0 (1 , 1) − 1 (1 , 2) − 1 (1 , 2) − 3 (1 , 3) 0 (1 , 3) − 1 2 2 New Leptons: del Aguila, de Blas, Perez-Victoria, '08
Irrep Irrep Vector Scalars Scalars Irrep Colored Scalars Irrep We already have a tree-level dictionary for non-mixed contributions! Colorless Irrep Colored Vector Tree Level Matching B 1 W 1 G 1 B µ W µ G µ H µ L µ µ µ µ (1 , 1)0 (1 , 1)1 (1 , Adj )0 (1 , Adj )1 ( Adj , 1)0 ( Adj , 1)1 ( Adj , Adj )0 (1 , 2) − 3 2 U 2 U 5 Q 1 Q 5 Y 1 Y 5 X µ µ µ µ µ µ µ (¯ (¯ (3 , 1) 2 (3 , 1) 5 (3 , 2) 1 (3 , 2) − 5 (3 , Adj ) 2 6 , 2) 1 6 , 2) − 5 3 3 6 6 3 6 6 New Vectors: del Aguila, de Blas, Perez-Victoria, '10 S S 1 S 2 ϕ Ξ0 Ξ1 Θ1 Θ3 (1 , 1)0 (1 , 1)1 (1 , 1)2 (1 , 2) 1 (1 , 3)0 (1 , 3)1 (1 , 4) 1 (1 , 4) 3 2 2 2 Π1 Π7 ω 1 ω 2 ω 4 ζ (3 , 1) − 1 (3 , 1) 2 (3 , 1) − 4 (3 , 2) 1 (3 , 2) 7 (3 , 3) − 1 3 3 3 6 6 3 Ω1 Ω2 Ω4 Υ Φ (6 , 1) 1 (6 , 1) − 2 (6 , 1) 4 (6 , 3) 1 (8 , 2) 1 3 3 3 3 2 New Scalars: de Blas, Chala, Perez-Victoria, Santiago, '15
eff at tree level contributions Tree Level Matching • Dimensionful couplings imply that particles with difgerent spin can simultaneously contribute to L d =6 κφ 1 φ 2 φ 3 + κ ′ V µ D µ φ + κ ′′ V µ V ′ µ + . . . . . . • Only a subset of the irreps in the previous lists contributes • Work in progress: de Blas, Chala, Criado, Perez-Victoria, Santiago, to appear soon • Then, the tree-level UV/IR dictionary will be complete!
generated at the quantum level appear at loop level in specifjc models account for these cases seems compulsory. One loop matching • Many contributions to the efgective Lagrangian can be only • Even contributions that can potentially arise at tree-level only • The dictionary should be extended to one loop if we want to • The number of possibilities increases dramatically!! Automation • The matching can be performed • Diagrammatically Anastasiou, AC, Lazapoulos, Santiago • By functional methods Henning, Lu & Murayama, '14; Drozd, Ellis, Quevillon, You, '15; Henning, Lu, Murayama, '16; Ellis, Quevillon, You, Zhang, '16; Fuentes-Martin, Portoles, Ruiz-Femenia, '16
where leads at one-loop order in the saddle-point approximation to The efgective action One loop matching by functional methods ∫ e iS eff ( φ ) = D Φ e iS UV ( φ, Φ) ( ) − δ 2 S UV ( φ, Φ) � � S eff ( φ ) = S UV ( φ, Φ c ( φ )) + i � 2 log det δ Φ 2 � Φ c � δ S ( φ, Φ) � = 0 ⇒ Φ c ( φ ) � δ Φ � Φ c φ φ . . . Φ Φ
U obtaining where One loop matching by functional methods Henning, Lu & Murayama, '14 resuscitated the Covariant Derivative Expansion (CDE) Gaillard, '86; Cheyette, 86 for the calculation of ( ) − δ 2 S UV ( φ, Φ) � D 2 + m 2 � [ ] ∆ S eff ( φ ) = ic s Tr log = ic s Tr log Φ − U ( φ ) � δ Φ 2 � Φ c [ ) 2 ] d 4 q ∫ ∫ ( ∂ q µ + ˜ Φ + ˜ d 4 x + m 2 ∆ S eff ( φ ) = ic s − G µν (2 π ) 4 tr log ∂ q ν ∞ n + 1 ∂ n ˜ ∑ G µν = ( n + 2)! [ P α 1 , [ . . . [ P α n , [ D µ , D ν ]]]] ∂ q α 1 ∂ q α 2 · · · ∂ q α n n =0 ∞ 1 ∂ n ˜ ∑ U µν = n ! [ P α 1 , [ . . . [ P α n , U ]]] ∂ q α 1 ∂ q α 2 · · · ∂ q α n n =0
for all! U U U U d q d q or One loop matching by functional methods Henning, Lu & Murayama, '14 After expanding in ∆ = ( q 2 − m 2 Φ ) − 1 one obtains (for d q = d 4 q /(2 π ) 4 ) ∫ ∫ 1 d m 2 ∆ L eff = − ic s Φ tr [ ({ } )] q µ , ˜ + ˜ G σµ ˜ ν ∂ µ ∂ ν − ˜ ∆ − 1 1 + ∆ G µν ∂ µ G σ ∫ ∫ [ ( G 2 − ˜ ) { q , ˜ G } + ˜ d m 2 ∆ L eff = − ic s ∆ − ∆ ∆ Φ tr ( G 2 − ˜ ) ( G 2 − ˜ ) ] { q , ˜ G } + ˜ { q , ˜ G } + ˜ +∆ ∆ ∆ + . . . In the case m Φ ∝ 1 , [∆ , [ P α 1 , [ . . . , [ P α n , [ D µ , D ν ]]]]] = [∆ , [ P α 1 , [ . . . , [ P α n , U ]]]] = 0 so the d q integrals factor out of the trace and can be computed once and
U c s One loop matching by functional methods Henning, Lu & Murayama, '14 { L eff , 1 − loop = (4 π ) 2 tr log m 2 [ − 1 µ 2 − 3 )] ( + m 4 2 2 log m 2 [ ] ( ) + m 2 − µ 2 − 1 [ ] log m 2 2 log m 2 − 1 µν − 1 ( ) + m 0 G ′ 2 µ 2 U 2 µ 2 − 1 12 [ ] 1 − 1 ) 2 − 1 σµ − 1 12 ( P µ U ) 2 − 1 6 U 3 − 1 P µ G ′ 90 G ′ µν G ′ νσ G ′ 12 UG ′ µν G ′ + ( µν µν m 2 60 [ 1 24 U 4 + 1 1 1 ) 2 + 1 ) 2 + ( ) P 2 U U 2 G ′ µν G ′ + ( ( P µ U µν m 4 12 U 120 24 ] 1 1 G ′ U [ U , G ′ G ′ [ ] [ ] ( P µ U ) , ( P ν U ) µν ] − µν − µν 120 120 [ ] 1 − 1 60 U 5 − 1 ) 2 − 1 20 U 2 ( ) 2 ( + P µ U UP µ U m 6 30 [ 1 ]} 1 120 U 6 where P µ A = [ P µ , A ] , G ′ + µν = [ D µ , D ν ] m 8
Recommend
More recommend