demonstration of technology options for storage of
play

Demonstration of Technology Options for Storage of Renewable Energy - PowerPoint PPT Presentation

Demonstration of Technology Options for Storage of Renewable Energy S. Elangovan, J. Hartvigsen, and L. Frost Ceramatec, Inc. Brainstorming Workshop Institute for Advanced Sustainability Studies e.V. (IASS) Postdam, Germany November 19-20,


  1. Demonstration of Technology Options for Storage of Renewable Energy S. Elangovan, J. Hartvigsen, and L. Frost Ceramatec, Inc. Brainstorming Workshop Institute for Advanced Sustainability Studies e.V. (IASS) Postdam, Germany November 19-20, 2013 Acknowledgement: DOE, ONR, State of WY

  2. Outline • Introduction • Technology Needs and Challenges • Technology Options Pursued at Ceramatec – Electrochemical (Solid Oxide) Technology – Fuel Reformation • Liquid Fuel Synthesis • Summary

  3. Global Challenges Population/ Energy Standard of Need Living Emissions Geo- Renewable Global Political Energy Warming Energy Petroleum Need Storage

  4. Where can we apply integrated solution Population/ Energy Standard of Need Living Emissions Geo- Renewable Global Political Energy Warming Petroleum Storage Need

  5. Increase in Standard of Living & Energy Demand Shell International, Energy Needs, Choices and Possibilities, Scenarios to 2050, London, 2010

  6. Energy • Sources • Forms • Challenges – Oil – Electricity – Supply/ Demand – Biomass – Heat – Conversion – Gas – Motive – Tranportation Power – Coal – Storage – Nuclear – Efficiency – Renewable – Emission

  7. Ceramatec’s Focus Areas • Abundant Renewable • Location Energy Constraint • High Efficiency Consumes CO 2 � • Technology Electrochemical Alternative to Sequestration � Maturity? • Scale up & Cost? • Source of Heat, Synthesis Gas Electricity, Chemicals • High Liquid Energy Hydrocarbon Density Transportability � High Demand �

  8. Focus/Interest/Experience • Electrochemical ü Solid Oxide Fuel Cell/Solid Oxide Electrolyzer – Molten Salt Electrolyzer (potential scale up option) • Syngas Generation ü Co-electrolysis of CO 2 and H 2 O ü Reformation of methane containing gases • Stranded natural gas • Biogas • Landfill gas • Syngas to Liquid Fuels ü Fischer Tropsch

  9. Electrochemical Conversion • Solid Oxide Fuel Cells – Decades of R&D worldwide – Excellent Technical Progress – Numerous small and large demonstrations – Market introduction?? – How can we benefit from the progress made • Build on progress • Expand Applications

  10. Electrolysis Is The Key To Synfuels • Leverage decades of SOFC R&D • Inputs – e - (green electrons) – steam => hydrogen – co-electrolysis of H 2 O + CO 2 => syngas – heat input optional, depends on operating point • Most efficiency means of hydrogen production – e - to hydrogen • η =100% at 1.285V • η = 95% at 1.35V • η =107% at 1.20V, (heat required) • Hot O 2 and steam byproducts – Valuable for biomass gasification

  11. Synfuel Power Market Much Larger Than Grid Electrolysis at 1.285 Annual US Petroleum Synfuel electric V/cell Electrical Energy equivalent energy as ratio to $25/MW-hr Demand k-bbl current demand Syngas cost $80/bbl GW-hr Conventional 4,119,388 1,801,874 1x Electric Load 47% of Capacity 470 GW US Crude Oil 3,580,694 2x Imports 940 GW US Crude & Refined 4,726,994 2.6x Imports $720k/min @ $80/bbl 1,220 GW US Crude Oil 5,361,287 3.0x Refinery Inputs 1,410 GW US Crude & Refined 6,277,893 3.5x Refinery Inputs 1,650 GW http://tonto.eia.doe.gov/dnav/pet/pet_sum_snd_d_nus_mbbl_a_cur.htm � http://www.eia.doe.gov/cneaf/electricity/epa/epates.html � Grid stability restricts wind to ~ 1/6 of load and requires costly reserve �

  12. Liquid Hydrocarbon Energy Density and Value • Energy Density – Diesel 42 MJ/kg, 0.86 kg/liter – Hydrogen at 690 bar (10,000 psi) Z=1.43 – 4.4 MJ/liter (min. work of compression is 10-12% of LHV) • Established markets for liquid fuels – Highly developed infrastructure – Existing vehicle fleet – US demand, 6.3 billion bbl/yr, > $500 billion/yr • Liquid fuels command a premium – Negative value for CO 2 to $ 85/ton of C for crude oil

  13. Electrochemical Technologies Renewable Energy + Carbon dioxide Recycle at ~ 100% Efficiency à Synthesis Gas

  14. One Technology - Multiple Modes Of Operation Solid Oxide Stack Module NG Biogas Syngas Fuel Diesel (CO + H 2 JP-8 Coal Electricity CO 2 & Steam + Electricity Steam + Electricity Hydrogen (High Purity)

  15. Co-electrolysis Reaction Paths [3] [2] [1] [1] H 2 O + 2e - → H 2 + O 2- (electrolysis of steam) kinetics favored [1] CO 2 + 2e - → CO + O 2- (electrolysis of CO 2 ) kinetics slower [2] CO 2 + H 2 ↔ CO + H 2 O (reverse water gas shift ) kinetics fast [3] Reverse shift reaction: CO 2 + ⇑ H 2 <= => CO + ⇓ H 2 O As steam is consumed and H 2 produced, the RWGSR converts CO 2 to CO

  16. Scale up & Demonstration 720 Cell System Hydrogen Production: 5.7 Nm 3 /hr � • 18 kW Steam Electrolyzer (Ceramatec Stacks tested at Idaho National Labs.)

  17. Technical Challenges • Air electrode delamination • Chromium poisoning • Seal challenge (back pressure from product collection) • High steam corrosion of metal interconnect

  18. Electrolysis Stack Stability Progress

  19. Recent ¡SOEC ¡Stacks ¡Meet ¡Life2me ¡Targets ¡ Steam ¡supply ¡ failure ¡ ASR ¡Limit ¡for ¡ 40,000 ¡hr ¡ life2me ¡target ¡ 19 ¡

  20. Molten Salt Electrolysis CO in anode 2 cathode O out CO out 2 2 - 2 - CO O CO + → 2 3 1 2 - O 2 e − O CO 2 - 2 e CO 2O 2 - − → − + → + 2 2 3 melt of Li 2 CO 3 Thermal neutral voltage: 1.46V/cell Cell voltage: 1.05±0.05V Faradaic efficiency: 100 % Current density: 100 mA/cm 2 Thermodynamic efficiency: 100% No Degradation in 700hr test • Demonstrated at Weizmann Inst., Israel (5000 A cell) • Operating Principle & Efficiency – same as SOEC • Near term scale up possible

  21. Reformation Process for Syngas Generation Stranded Natural Gas Biogas (Anaerobic Digester) Landfill Gas

  22. Reformation • Low Power Plasma – Plasma is a continuously renewing catalyst – Low Electric Power Consumption • ~ 1 to 2% of heating value of fuel • < 8% heat of reformation – Sulfur tolerant Plasma Head �

  23. Low Power Plasma: Liquid/Gas Fuel Reformation • 1 • Large reformer – Can process 100 thousand standard cubic feet/day of Natural Gas (~3000 m 3 / day) – > 1 MW thermal – Can reform liquid fuels – Sulfur tolerant

  24. Reformer scale-up Reformer + Gasifier 10 TPD Biomass Gasification * Large reformer * To reform residual tars/oil from 10 TPD biomass gasifier

  25. Synfuels Historical Perspective • Fischer-Tropsch Synthesis – First commercial plant in Germany, 1936 – Continuous commercial operation in South Africa since 1955 • Secunda plant is CTL • Also operate GTL – Shell GTL in Malaysia – Newer plant in Qatar (Oryx) – Primarily large scale CTL & GTL • Syngas production cost ~5/6 of total • Syngas conversion cost ~1/6 of total – $80 to $120/bbl (depends on electric rate, tax credit) Challenge: Produce a small scale plant at same cost per bpd capacity as large plant

  26. Ceramatec Laboratory Syngas Facility Two stage oil free syngas compressor with syngas drying system. Discharge pressure 150-200 psig Final stage oil free compressor. Discharge pressure 800 psig Two 500 gallon, 800 psig syngas tanks; 7200 SCF capacity Inter-stage tank 240 gallon

  27. Ceramatec Laboratory FT System Capacity: ¡3 ¡to ¡4 ¡liters/day ¡ ¡ Single ¡tube ¡FT ¡reactor ¡ 42.7mm ¡ID, ¡2.0 ¡m ¡length, ¡~2.9 ¡liters ¡ ¡ Backpressure ¡regulaHon ¡system, ¡20-­‑30 ¡barg ¡ ¡ High ¡pressure ¡mass ¡flow ¡controllers ¡ ¡ (low/high ¡range) ¡ ¡ Temperature ¡controllers ¡for ¡reactor ¡and ¡ ¡ collecHon ¡system ¡ ¡ Hot ¡and ¡cold ¡product ¡collecHon ¡vessels ¡ ¡ Recycle ¡pump ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡& ¡ Cooling ¡system ¡

  28. Ceramatec FT Product From 1-1/2” Reactor • Production rates up to 4 liter/day • 2200 hour run • FT 46.5 MJ/kg, diesel 46 MJ/kg, 40 MJ/kg B100 FAME • Cetane 60.2 by ASTM D613

  29. Compressor Scale up • Capacity equivalent to 2 bpd of FT liquid

  30. Pre-pilot Plant Scale up 4” Reactor Tube - Fischer Tropsch Skid � Capacity: 0.25 bpd (40 liters/day) �

  31. Novel Design Features • Major FT Challenge – Heat removal from exothermic process – Necessitates use of small reactor tubes • Ceramatec Approach – Dual cooling loop – Internal heat transfer – Allows the use of larger tubes – 100 mm diameter reactor tested – Allows capital cost reduction

  32. FT Demonstration 30 liters/day FT Production Demonstrated �

  33. FT Product Analysis 20 081913 090613 091013 091613 091813 091213 091313 100113 100313 100213 093013 092613 092513 092413 092313 092013 15 %CN 10 5 0 5 10 15 20 25 30 35 Carbon Number 30 days of continuous operation showed stable performance � 33 �

  34. Pilot Plant Layout (10 bpd ~ 1,600 liters/day) 100 bpd preliminary reactor concept developed �

Recommend


More recommend