deep inference in bi intuitionistic logic
play

Deep Inference in Bi-intuitionistic Logic Linda Postniece Logic and - PowerPoint PPT Presentation

DBiInt BiInt Nested Sequents Conclusion Deep Inference in Bi-intuitionistic Logic Linda Postniece Logic and Computation Group College of Computer Science and Engineering The Australian National University WoLLIC 2009 Linda Postniece Deep


  1. DBiInt BiInt Nested Sequents Conclusion Deep Inference in Bi-intuitionistic Logic Linda Postniece Logic and Computation Group College of Computer Science and Engineering The Australian National University WoLLIC 2009 Linda Postniece Deep Inference in Bi-intuitionistic Logic

  2. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Introduction • Int + dual-Int Linda Postniece Deep Inference in Bi-intuitionistic Logic

  3. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Introduction • Int + dual-Int A ⊢ B , ∆ Γ , A ⊢ B • − → R < dual to → − < L A − < B ⊢ ∆ Γ ⊢ A → B Linda Postniece Deep Inference in Bi-intuitionistic Logic

  4. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Introduction • Int + dual-Int A ⊢ B , ∆ Γ , A ⊢ B • − → R < dual to → − < L A − < B ⊢ ∆ Γ ⊢ A → B • Hilbert calculus, algebraic and Kripke semantics (Rauszer 74) Linda Postniece Deep Inference in Bi-intuitionistic Logic

  5. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Introduction • Int + dual-Int A ⊢ B , ∆ Γ , A ⊢ B • − → R < dual to → − < L A − < B ⊢ ∆ Γ ⊢ A → B • Hilbert calculus, algebraic and Kripke semantics (Rauszer 74) • Type theoretic interpretation of co-routines (Crolard 04) Linda Postniece Deep Inference in Bi-intuitionistic Logic

  6. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Introduction • Int + dual-Int A ⊢ B , ∆ Γ , A ⊢ B • − → R < dual to → − < L A − < B ⊢ ∆ Γ ⊢ A → B • Hilbert calculus, algebraic and Kripke semantics (Rauszer 74) • Type theoretic interpretation of co-routines (Crolard 04) • Cut-elimination fails in traditional sequent calculi Linda Postniece Deep Inference in Bi-intuitionistic Logic

  7. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Introduction • Int + dual-Int A ⊢ B , ∆ Γ , A ⊢ B • − → R < dual to → − < L A − < B ⊢ ∆ Γ ⊢ A → B • Hilbert calculus, algebraic and Kripke semantics (Rauszer 74) • Type theoretic interpretation of co-routines (Crolard 04) • Cut-elimination fails in traditional sequent calculi • Need one of: labels, variables, nested sequents, display calculi Linda Postniece Deep Inference in Bi-intuitionistic Logic

  8. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Introduction • Int + dual-Int A ⊢ B , ∆ Γ , A ⊢ B • − → R < dual to → − < L A − < B ⊢ ∆ Γ ⊢ A → B • Hilbert calculus, algebraic and Kripke semantics (Rauszer 74) • Type theoretic interpretation of co-routines (Crolard 04) • Cut-elimination fails in traditional sequent calculi • Need one of: labels, variables, nested sequents, display calculi • Deep inference in nested sequents (Kashima 94, Brünnler 06) Linda Postniece Deep Inference in Bi-intuitionistic Logic

  9. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Introduction • Int + dual-Int A ⊢ B , ∆ Γ , A ⊢ B • − → R < dual to → − < L A − < B ⊢ ∆ Γ ⊢ A → B • Hilbert calculus, algebraic and Kripke semantics (Rauszer 74) • Type theoretic interpretation of co-routines (Crolard 04) • Cut-elimination fails in traditional sequent calculi • Need one of: labels, variables, nested sequents, display calculi • Deep inference in nested sequents (Kashima 94, Brünnler 06) • A nested sequent is a tree of traditional sequents Linda Postniece Deep Inference in Bi-intuitionistic Logic

  10. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Introduction • Int + dual-Int A ⊢ B , ∆ Γ , A ⊢ B • − → R < dual to → − < L A − < B ⊢ ∆ Γ ⊢ A → B • Hilbert calculus, algebraic and Kripke semantics (Rauszer 74) • Type theoretic interpretation of co-routines (Crolard 04) • Cut-elimination fails in traditional sequent calculi • Need one of: labels, variables, nested sequents, display calculi • Deep inference in nested sequents (Kashima 94, Brünnler 06) • A nested sequent is a tree of traditional sequents • Inference rules operate at any level of the nesting Linda Postniece Deep Inference in Bi-intuitionistic Logic

  11. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Motivation and Related Work • Rauszer’s sequent calculus requires cut (Uustalu 06) Linda Postniece Deep Inference in Bi-intuitionistic Logic

  12. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Motivation and Related Work • Rauszer’s sequent calculus requires cut (Uustalu 06) • Solution 1: cut-free semantically complete calculi Linda Postniece Deep Inference in Bi-intuitionistic Logic

  13. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Motivation and Related Work • Rauszer’s sequent calculus requires cut (Uustalu 06) • Solution 1: cut-free semantically complete calculi • Labelled sequent calculus (Pinto and Uustalu 09) Linda Postniece Deep Inference in Bi-intuitionistic Logic

  14. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Motivation and Related Work • Rauszer’s sequent calculus requires cut (Uustalu 06) • Solution 1: cut-free semantically complete calculi • Labelled sequent calculus (Pinto and Uustalu 09) • GBiInt variables, refutations/derivations (Goré and Postniece 08) Linda Postniece Deep Inference in Bi-intuitionistic Logic

  15. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Motivation and Related Work • Rauszer’s sequent calculus requires cut (Uustalu 06) • Solution 1: cut-free semantically complete calculi • Labelled sequent calculus (Pinto and Uustalu 09) • GBiInt variables, refutations/derivations (Goré and Postniece 08) • Solution 2: display logic and derivatives Linda Postniece Deep Inference in Bi-intuitionistic Logic

  16. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Motivation and Related Work • Rauszer’s sequent calculus requires cut (Uustalu 06) • Solution 1: cut-free semantically complete calculi • Labelled sequent calculus (Pinto and Uustalu 09) • GBiInt variables, refutations/derivations (Goré and Postniece 08) • Solution 2: display logic and derivatives • Display calculus (Goré 98) is not suitable for proof search Linda Postniece Deep Inference in Bi-intuitionistic Logic

  17. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Motivation and Related Work • Rauszer’s sequent calculus requires cut (Uustalu 06) • Solution 1: cut-free semantically complete calculi • Labelled sequent calculus (Pinto and Uustalu 09) • GBiInt variables, refutations/derivations (Goré and Postniece 08) • Solution 2: display logic and derivatives • Display calculus (Goré 98) is not suitable for proof search • Unrestricted display postulates and structural contraction Linda Postniece Deep Inference in Bi-intuitionistic Logic

  18. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Motivation and Related Work • Rauszer’s sequent calculus requires cut (Uustalu 06) • Solution 1: cut-free semantically complete calculi • Labelled sequent calculus (Pinto and Uustalu 09) • GBiInt variables, refutations/derivations (Goré and Postniece 08) • Solution 2: display logic and derivatives • Display calculus (Goré 98) is not suitable for proof search • Unrestricted display postulates and structural contraction • LBiInt: nested sequents (Goré, Postniece, Tiu 08) Linda Postniece Deep Inference in Bi-intuitionistic Logic

  19. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Motivation and Related Work • Rauszer’s sequent calculus requires cut (Uustalu 06) • Solution 1: cut-free semantically complete calculi • Labelled sequent calculus (Pinto and Uustalu 09) • GBiInt variables, refutations/derivations (Goré and Postniece 08) • Solution 2: display logic and derivatives • Display calculus (Goré 98) is not suitable for proof search • Unrestricted display postulates and structural contraction • LBiInt: nested sequents (Goré, Postniece, Tiu 08) • Sound and complete w.r.t. Rauszer’s Hilbert calculus Linda Postniece Deep Inference in Bi-intuitionistic Logic

  20. DBiInt BiInt Nested Sequents Conclusion Introduction BiInt Challenges Motivation and Related Work • Rauszer’s sequent calculus requires cut (Uustalu 06) • Solution 1: cut-free semantically complete calculi • Labelled sequent calculus (Pinto and Uustalu 09) • GBiInt variables, refutations/derivations (Goré and Postniece 08) • Solution 2: display logic and derivatives • Display calculus (Goré 98) is not suitable for proof search • Unrestricted display postulates and structural contraction • LBiInt: nested sequents (Goré, Postniece, Tiu 08) • Sound and complete w.r.t. Rauszer’s Hilbert calculus • Syntactic cut-elimination relies on residuation Linda Postniece Deep Inference in Bi-intuitionistic Logic

Recommend


More recommend