decarbonizing mobility
play

Decarbonizing Mobility Prof. Dr. Thomas Bernauer | | Institute of - PowerPoint PPT Presentation

Decarbonizing Mobility Prof. Dr. Thomas Bernauer | | Institute of Science, Technology and Policy GHG Emissions from Transport Source: EASAC policy report 37, March 2019 | | Institute of Science, Technology and Policy Prof. Dr. Thomas


  1. Decarbonizing Mobility Prof. Dr. Thomas Bernauer | | Institute of Science, Technology and Policy

  2. GHG Emissions from Transport Source: EASAC policy report 37, March 2019 | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 2

  3. Growing Travel and Transport Demand Source: EASAC policy report 37, March 2019 | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 3

  4. Challenges and Opportunities § EU target is to reduce GHG emissions from transport by 60% against the 1990 baseline by 2050 § Decarbonizing supply (electrification, hydrogen, …) § Limiting demand § Road transport, and in particular passenger cars and light-duty vehices, is the biggest challenge in terms of magnitute of emissions and regulatory politics § Biggest supply and demand side challenges and opportunities in urban centers | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 4

  5. Switzerland | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 5

  6. Switzerland https://www.bafu.admin.ch/bafu/de/home/themen/klima/mitteilungen.msg-id-78720.html | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 6

  7. Switzerland https://www.newsd.admin.ch/newsd/message/attachments/57697.pdf | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 7

  8. Switzerland | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 8

  9. Supply-Side Policy Goals § Replace internal combustion engines with electric engines (battery-electric vehicles, fuel cell vehices) – it takes about 20 years to renew the current vehicle fleet – currently less than 3% low-carbon vehicle sales in EU § Decarbonize electricity supply while decarbonizing vehicles § Create seamless and high-capacity multi-modal public transport options, one key-faced of which is the last mile - problem § Increase use of non-motorized mobility (bicycles, scooters, walking, etc.), particularly in urban centers | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 9

  10. Demand-Side Goals § Reverse common government policy that “curbing mobility is not an option” § Options: § Mobility pricing / increasing the cost of mobility across the board § More home-office, more video conferencing § Public awareness campaigns § Shifting demand to low carbon modes of transport (this might limit mobility growth, but not reduce mobility) | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 10

  11. The Effectiveness – Opposition/Acceptance Dilemma Effectiveness (GHG emission cuts) Which policies are • Effective in reaching certain societal goals • Economically efficient (cost- benefit ratio) • Politically feasible Citzen / consumer opposition | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 11

  12. Let’s Focus on Battery Electric Vehicles (BEV), one of they key options for decarbonizing individualized mobility | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 12

  13. More and More Electric Cars on Swiss Roads https://www.watson.ch/leben/auto/154716102-9-grafiken-und-statistiken- zum-elektroauto-in-der-schweiz-2018 | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 13

  14. In International Comparison… Data sources: EAFO, OECD | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 14

  15. … Switzerland Has a Long Way to Go! Data sources: EEA 2017, EAFO 2017 | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 15

  16. Key Obstacles to BEV Ownership § Concerns of consumers § Higher purchase price (up front investment) § Range / driving distance § Charging (duration, temporal and spatial availability, inconvenience) § Security and environmental concerns § Limited choice of car, model, etc. § Weak government incentives in Switzerland § Only few cantons use purchase subsidy (e.g. Ticino, Thurgau, Valais) § Very limited tax breaks § Parking privileges for BEV very rare (green zones) § Fairly large public charging network, but little awareness of it | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 16

  17. Some Insights from Our Research at the ISTP 1. Who owns a BEV? 2. Could better information on BEVs and test drives increase acceptance/attractiveness? 3. How do current BEV owners charge their vehicles, and what are the challenges in strongly increasing the BEV share in the country’s vehicles fleet? | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 17

  18. 1. Who Owns a BEV? § Survey of all BEV owners and a random sample of non-BEV owners in the cantons of Aargau, Schwyz, Zug und Zürich § Survey in Summer 2018 (Brückmann and Bernauer 2020) § N = 5’325, of 22’627 invited persons | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 18

  19. 1. Who Owns a BEV? § One-person households § Households with more than one car § Higher-income households with home-ownership § Stronger environmental attitudes and tech affinity § Live close to public charging infrastructure § Politically middle-to- left/green position Brückmann, Willibald, Blanco 2020 | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 19

  20. 1. Who Owns a BEV? § To increase the BEV share strongly, policies serving larger, less affluent households, households with one car, and non-home owners are needed. § Public charging infrastructure needs to be expanded very strongly § Our survey research shows strong public support for such expansion, but much less so for BEV purchase subsidies (Brückmann and Bernauer 2020) | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 20

  21. 2. Can More Information and Test-Drives Increase Acceptance? § Effects of 1. Test-driving and information 2. Information on a. Perception of BEV b. Purchasing intentions c. Policy preferences concerning BEVs experimental Follow up Follow up Baseline survey treatment survey 1 survey 2 summer 2018 autumn 18 - spring 2019 spring 2019 spring 2020 | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 21

  22. 2. Information Treatment § Energy efficiency § Environmental Informationen zu Elektroautos impacts Energieeffizienz Elektromotoren haben einen Wirkungsgrad von rund 90%, Benzin- und Dieselmotoren einen § Range Wirkungsgrad von rund 30%. Das heisst, dass bei Elektroautos 90% der eingesetzten Energie (Strom) zur Fortbewegung verwendet werden kann. Bei Benzin- oder Dieselautos sind es nur 30% (siehe Bild unten). Elektroautos brauchen Reichweite von Elektroautos Ladezeiten somit viel weniger Energie pro Kilometer als § Charging stations Benzin- oder Dieselautos. Die Reichweite von Elektroautos Die Ladezeit eines Elektroautos ist abhängig von der Kapazität hängt vom Ladestand, der Kapa- der Batterien. Kompaktere, zität der Batterie (in kWh) und der günstigere Elektroautos haben technischen Ausrüstung des kleinere Batterien und Reichwei- Autos und der Ladevorrichtung ten von 200 km im alltäglichen ab. Der schwächste Faktor in § Charging times Gebrauch. Grössere und teurere dieser Kette bestimmt die Lade- Elektroautos haben Reichweiten von bis zu 500 km dauer. Wirkungsgrad in der Praxis. Dabei beeinflusst der Fahrstil die 90% 30% Reichweite eines Elektroautos, da durch langsame- Beispiele für Ladezeiten res und vorrausschauendes Fahren und den mass- vollen Gebrauch von Heizung und Klimaanlage viel Umweltauswirkungen § Costs Energie gespart werden kann. Zusätzlich kann beim Durchschnittliche CO 2 -Emissionen sind hauptverantwortlich für den Bremsen und (bergabwärts) Rollen die Batterie Ladevorrichtung Ladedauer um 80% Klimawandel. Der Verkehr trägt rund 30% zu den wieder aufgeladen werden. der Batterie zu laden gesamten CO 2 -Emissionen der Schweiz bei. Die CO 2 -Emissionen von Elektroautos sind über ihre Haushaltssteckdose 8 -14 Std. Ladestationen gesamte Lebensdauer gerechnet (Herstellung, Betrieb, Entsorgung) um mindestens 60% gerin- In der Schweiz wird das Netz Ladung zuhause mit § Comparison to ICE ger als die CO 2 -Emissionen eines vergleichbaren öffentlicher Ladestationen Installation einer speziel- 4 Std. Benzin- oder Dieselautos. Voraussetzung dafür immer dichter. Ladestationen len Ladestation ist, dass der Strom für Elektroautos aus erneu- sind leicht über Navigationsgerä- erbaren Energiequellen stammt. Dies ist in der te, Apps und im Internet zu Öffentliche Ladestation 1 Std. Schweiz gut möglich. Zudem stossen Elektroautos Schild für Elektroauto- finden. Beispiele für Websites Ladestation auf cars keine Abgase aus und belasten dadurch die Luft- Öffentliche mit Ladestationen sind Nationalstrassen Unter 1 Std. Schnellladestation qualität nicht. Ausserdem verursachen sie deut- https://e-mobile.ch/de/elektro-tankstelle-finden lich weniger Lärm als Benzin- und Dieselautos. oder https://chargemap.com/map § N = 1097 | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 22

Recommend


More recommend