dave cooper uab
play

Dave Cooper (UAB) Ifju, Jenkins, Ettinger, Lian, Shyy (2002) Size - PowerPoint PPT Presentation

Dave Cooper (UAB) Ifju, Jenkins, Ettinger, Lian, Shyy (2002) Size of the order of insects or birds Propulsion Fixed wing Rotary wing Flapping wing Combination Jones, Bradshaw, Papadopoulos, Platzer (2005) Applications


  1. Dave Cooper (UAB)

  2. Ifju, Jenkins, Ettinger, Lian, Shyy (2002)  Size of the order of insects or birds  Propulsion ◦ Fixed wing ◦ Rotary wing ◦ Flapping wing ◦ Combination Jones, Bradshaw, Papadopoulos, Platzer (2005)

  3.  Applications ◦ Defense ◦ Search and Rescue ◦ Surveillance  Examples ◦ DelFly micro, TU Delft (3g/10cm) ◦ Nano Hummingbird, AeroVironment (19g/16cm) ◦ UAB (10g/20cm) ◦ Wright State (12g/20cm)

  4.  2 pair of Counter-oscillating flexible wings  Clap and fling interactions

  5.  How much power is required?  What are the forces?  How do the input parameters affect the performance? ◦ Wing geometry ◦ Frequency

  6.  Morphing mesh  Rigid body assumption ◦ Less expensive ◦ Is it valid?

  7.  Morphing considerations ◦ Poor cell quality ◦ Negative volume cells ◦ Computation time  Solutions ◦ Minimum space between wings (6mm) ◦ Pre-Morphing mesh ◦ Limit number of cells

  8.  2-components ◦ Flapping  About Z-axis  Mechanism parameter driven ◦ Pitching  About wing leading edge  Specified

  9.  Input parameters ◦ Linkage lengths ◦ Drive gear rotational speed 0.8 0.6 ad) 0.4 (rad 0.2 le ( Angle 0 -0.2 -0.4 0 0.01 0.02 0.03 0.04 Time(s) s)

  10. 1 Interacti 1 tion on 1  Specified 0.5 e (rad) d) 0 Angle ( ◦ Avoiding negative An -0.5 volume cells -1 ◦ “Natural” motion 0 0.01 0.02 0.03 0.04 Ti Time me(s) ◦ Timing and max pitch are adjusted 2 I Interacti tions ons 1 0.5 d) e (rad) 0 Angle ( An -0.5 -1 0 0.01 0.02 0.03 0.04 Ti Time me(s)

  11. 1 I Interacti tion on  Time derivatives 250 d/s) ◦ MATLAB calculated peed (rad/ 150 numerical derivatives speed 50 Angular s  Tables generated -50 -150 An 0.00 0.01 0.02 0.03 0.04 Ti Time me(s) Fla Flappi pping 2 I Interacti tions ons 100 200 eed (rad/s) d/s) 150 peed (rad/ 50 100 speed 50 speed 0 0 Anglular s Angular s -50 -50 -100 -100 -150 An An 0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04 Time Ti me(s) Ti Time me(s)

  12.  11 field functions ◦ 1 Flapping table interpolation ◦ 2 Pitching table interpolation ◦ 4 Wing axis tracking ◦ 4 Wing motion compilation

  13.  4 motions ◦ 1 for each wing ◦ Modified center of rotation coordinate systems ◦ Direction and magnitude of vector field functions

  14.  Qualitative verification ◦ Does it look natural?

  15. Frequency (Hz) Maximum Pitch (deg) Avg Thrust (N) Avg Power (W) 30* 30* 0.08* 0.65* 35* 30* 0.11* 1.02* 35* 45* 0.15* 0.79* 28* 45* 0.09* 0.33* 28 45 0.14 1.05 23 45 0.09 0.56 *Simulations conducted using only two wings and assuming symmetry.

  16. 0.5 0.4 0.3 (N) 0.2 Thrust ( 0.1 Th 0  Thrust -0.1 ◦ Average: 0.09N -0.2  Moments about 0.015 Z-axis 0.01  Power (N-m) m) 0.005 ◦ Average: 0.56W ment ( 0 Mome  No Appreciable Hysteresis -0.005 Mo effects -0.01 -0.015 0.5 0.3 ower (W) (W) Powe 0.1 -0.1 -0.3 0.00 0.02 0.04 0.06 0.08 0.10

  17.  Dependencies ◦ Thrust ~ Freq 2 ◦ Power ~ Freq 3 ◦ Thrust ~ Wing Area ◦ Power ~ Wing Area  Conclusion ◦ Trading Wing Area for Frequency results in a net gain

  18. Ifju, Jenkins, Ettinger, Lian, Shyy (2002). Flexible-Wing-Based Micro Air Vehicles. AIAA 2002-0705  Jones, Bradshaw, Papadopoulos, Platzer (2005). Bio-inspired design of flapping-wingmicro air vehicles.  The Aeronautical Journal, Aug 2005 DelFly micro. http://www.delfly.nl/  AeroVironment. Nano hummingbird. http://www.avinc.com/nano  Ohio Center of Excellence for Micro Air Vehicle Research at Wright State University.  http://www.engineering.wright.edu/mav/

Recommend


More recommend