dark matter neutrinos and inflation
play

Dark Matter, Neutrinos, and Inflation FNAL Theoretical Astrophysics: - PowerPoint PPT Presentation

Dark Matter, Neutrinos, and Inflation FNAL Theoretical Astrophysics: A Tradition of Finding Cosmic Probes of BSM Physics 1 Scott Dodelson 7/30/14 Dark Matter Searches With Cosmic Ray Anti-Matter 1.00 A M S h a s c o


  1. Dark Matter, Neutrinos, and Inflation � FNAL Theoretical Astrophysics: 
 A Tradition of Finding Cosmic Probes of BSM Physics � 1 � Scott Dodelson � 7/30/14 �

  2. Dark Matter � Searches With Cosmic Ray Anti-Matter ¡ 1.00 A M S h a s c o n fi r m e d Dot � Dashed: M Χ � 2.5 TeV, ΧΧ�ΦΦ� 2 Μ � 2 Μ � e E 3 x diff. flux GeV 2 � m 2 s sr � 1 PAMELA’s positron excess, 0.50 Dashed: M Χ � 3.0 TeV, ΧΧ�ΦΦ� 2 Π � 2 Π � with much greater precision � Solid: M Χ � 1.6 TeV, ΧΧ�ΦΦ� 2 e � , 2 Μ � , 2 Π � at 1:1:2 0.20 � e � �� e � � e � � Global fits find that both 0.10 dark matter and pulsar 0.05 models can account for the observed data � 0.02 e 1 5 10 50 100 E � GeV � Cholis ¡& ¡Hooper ¡2013 ¡ 2 � Scott Dodelson � 7/30/14 �

  3. Dark Matter � Searches With Cosmic Ray Anti-Matter ¡ Bergstr¨ om et al. (2013) 10 − 23 dashed: Fermi LAT 7 P A solid: AMS-02 (this work) M W The lack of spectral 10 − 24 features in the positron 10 − 25 excess strongly constrains h σ v i [cm 3 s − 1 ] dark matter annihilating to 10 − 26 charged leptons (as τ + τ � proposed by Hooper and 10 − 27 µ + µ � Xue 2013) � e + e � γ 10 − 28 e + e � 10 − 29 10 1 10 2 m χ [GeV] Bergstrom, ¡Cholis, ¡ ¡Hooper, ¡et ¡al. ¡2013 ¡ 3 � Scott Dodelson � 7/30/14 �

  4. Dark Matter � Searches With Gamma Rays ¡ Fermi is transforming indirect detection, and we have used this data set to perform many state-of- the-art dark matter searches, including: � � Using a large collection of multi- wavelength data, we have built an astrophysical model of the extragalactic diffuse gamma-ray emission, and placed constraints o n t h e c o n t r i b u t i o n f r o m Cholis, ¡ ¡Hooper, ¡McDermo; ¡2014 ¡ annihilating dark matter � 4 � Scott Dodelson � 7/30/14 �

  5. Dark Matter � Searches With Gamma Rays ¡ Fermi is transforming indirect detection, and we have used this data set to perform many state-of- 50 XX Æ b b the-art dark matter searches, m X = 100 GeV 20 including: � Number of Sources 10 � 5 W e h a v e s e a r c h e d f o r a s v = 2 3 . 1 ¥ unidentified population of gamma- 1 0 - 26 1 c m 3 ray point sources, constraining ë s 1 ¥ 10 - 10 2 ¥ 10 - 10 5 ¥ 10 - 10 1 ¥ 10 - 9 2 ¥ 10 - 9 5 ¥ 10 - 9 dark matter in nearby sub-halos � F g H cm - 2 s - 1 L Berlin ¡& ¡ ¡Hooper ¡2013 ¡ 5 � Scott Dodelson � 7/30/14 �

  6. Dark Matter � Another Possible Handle on Sub-Halos ¡ • Can infer local DM density by studying the distribution of stars (Oort 1932!) � • Found kink in this program: large asymmetry between North & South à local density disturbed by ? � • Might open up ways of searching for passing DM sub-halos � Widrow, ¡Gardner, ¡Yanny, ¡Dodelson, ¡& ¡Chen ¡2012 ¡ 6 � Scott Dodelson � 7/30/14 �

  7. Dark Matter � Searches With Gamma Rays ¡ Fermi is transforming indirect detection, and we have used this data set to perform many state-of- the-art dark matter searches, including: � � Used statistical tools to extract constraints on spherically symmetric signal (DM) in the presence of foregrounds in annuli surrounding Galactic Center � Baxter ¡& ¡Dodelson ¡2011 ¡ Accounts ¡for ¡uncertainty ¡ in ¡DM ¡density ¡ 7 � Scott Dodelson � 7/30/14 �

  8. Dark Matter � Searches With Gamma Rays ¡ Fermi is transforming indirect detection, and we have used this data set to perform many state-of- the-art dark matter searches, including: � � The Galactic Center continues to be a powerful probe of dark matter; strong limits can be made, even without sophisticated modeling of backgrounds � Hooper, ¡Kelso, ¡Queiroz, ¡2012 ¡ 8 � Scott Dodelson � 7/30/14 �

  9. Excess ¡at ¡1-­‑3 ¡GeV, ¡well ¡fit ¡ Dark Matter � by ¡~30 ¡GeV ¡DM ¡parAcles ¡ Galactic Center Excess ¡ Originally discovered by Hooper and Goodenough (2009, 2011) measurements Daylan, ¡Finkbeiner, ¡Hooper, ¡ of the gamma-ray excess et ¡al. ¡2014 ¡ from the inner Milky Way have recently become much more robust and highly statistically significant � SpaAally ¡extended ¡(>10 ¡ degrees, ¡slightly ¡steeper ¡ than ¡NFW ¡ Spherically ¡symmetric ¡ 9 � Scott Dodelson � 7/30/14 �

  10. Dark Matter � Galactic Center Excess ¡ If interpreted as annihilating dark matter, the normalization of the signal implies a cross section of σ v ~ 2x10 -26 cm 3 /s, strongly indicative of a thermal relic � Broadly speaking, two directions for model Berlin, ¡Hooper, ¡McDermo; ¡2014 ¡ Agrawal, ¡Batell, ¡Hooper, ¡Lin ¡2014 ¡ building present themselves: � • NMSSM, m c = 67 GeV, tan b = 5 Annihilations directly to quarks through a 90 new mediator with either pseudoscalar or 80 axial interactions, or through a t-channel 70 * sbottom-like particle � 60 m a s @ GeV D • 50 Annihilations to other states in the dark 40 sector , which produce the observed gamma 30 rays in their decays (see also, Abdullah et al , 20 arXiv:1404.6528) � 20 40 60 80 100 m h s @ GeV D Berlin, ¡GraNa, ¡Hooper, ¡McDermo; ¡2014 ¡ 10 � Scott Dodelson � 7/30/14 �

  11. Dark Matter � Complex Dark Sector ¡ • Heavy particles in dark sector RaAo ¡of ¡Unstable ¡heavy ¡DM ¡to ¡ordinary ¡DM ¡ can decay to ordinary DM, producing positrons � • Produced late enough, the positrons cool down and are accreted into our Galaxy, wherein they annihilate producing 511 keV lines � • Viable allowed region might help explain INTEGRAL observations � Boubekeur, ¡Dodelson, ¡and ¡Vives ¡2012 ¡ 11 � Scott Dodelson � 7/30/14 �

  12. Dark Matter � The Case against Modified Gravity ¡ Claim of evidence for MOND arises from improper interpretation of observations. � Total ¡gas ¡ Gnedin ¡2012 ¡ Neutral ¡(= ¡observable) ¡ gas ¡ “MOND ¡line” ¡ 12 � Scott Dodelson � 7/30/14 �

  13. Dark Matter � The Case against Modified Gravity ¡ Earlier work (Dodelson & Liguori 2006) showed that TeVeS raised the amplitude of the perturbations, but the shape is still all wrong: generic problem for MG models � Dodelson ¡2011 ¡ 13 � Scott Dodelson � 7/30/14 �

  14. Neutrinos � AcceleraAon ¡Mechanism ¡for ¡High ¡Energy ¡Neutrinos ¡ • IceCube has recently reported the detection of a diffuse flux of extraterrestrial ~50 TeV-2 PeV neutrinos � • Candidate source classes include active galactic nuclei, low-luminosity gamma- e ray bursts, and starburst galaxies (Cholis and Hooper 2013 and Anchordoqui et al. 2014) � • Cosmic neutrinos with PeV-EeV energies provide an opportunity to observe interactions in accessible at the LHC, and over wildly longer baselines than otherwise possible � 14 � Presenter | Presentation Title � 7/23/14 �

  15. Neutrinos � AcceleraAon ¡Mechanism ¡for ¡High ¡Energy ¡Neutrinos ¡ • Nanoshots : little known and Crab ¡Nebula, ¡2.5 ¡kpc ¡away ¡ poorly understood phenomena. � • Duration points to small sources (<1m); amplitude e points to large E field � • S t e b b i n s & Yo o s h o w nanoshots consistent w/ Schwinger sparks: bursts of vacuum e ± pair production. Rate goes as � 15 � Presenter | Presentation Title � 7/23/14 �

  16. Neutrinos � AcceleraAon ¡Mechanism ¡for ¡High ¡Energy ¡Neutrinos ¡ Crab ¡Nebula, ¡2.5 ¡kpc ¡away ¡ e Stebbins ¡& ¡Yoo ¡2014 ¡ Electrons and positrons separate, producing large electric field, acceleration to large energies (>10 5 TeV). These same high-energy e ± produce high-energy neutrinos that could be related to those detected by IceCube � 16 � Presenter | Presentation Title � 7/23/14 �

  17. Neutrinos � Fast ¡Radio ¡Bursts ¡as ¡Neutrino ¡Sources ¡ • Fast radio bursts could be neutron star coalescence events, which also produce 10-50 MeV neutrinos � • Flux is potentially much larger than background, especially if coincidence with radio telescopes is exploited � • Could extract constraints on Stebbins ¡2014 ¡ neutrino masses � 17 � Presenter | Presentation Title � 7/23/14 �

  18. Neutrinos � DES ¡Large-­‑scale ¡Structure ¡constrains ¡Neutrino ¡Mass ¡ ¡ DES+Planck ¡forecast ¡ • Constrain neutrino mass using galaxy angular clustering in redshift slices (neutrinos suppress small- eV ¡ scale clustering) � • DES+Planck forecasts, including dark energy � • Include galaxy bias models informed by N-body simulations: � – Black: unbiased � – Magenta: 7-parameter evolving b(z) � • Plan: apply to N-body simulations Zablocki ¡2014 ¡ ¡ and to early DES data and LSST (Frieman ¡student) ¡ forecasts � 18 � Presenter | Presentation Title � 7/23/14 �

  19. Neutrinos � InterpreAng ¡Cosmic ¡Constraints ¡ SPT: ¡Hou, ¡…,Dodelson, ¡… ¡2014 ¡ 19 � Scott Dodelson � 7/30/14 �

  20. Neutrinos � InterpreAng ¡Cosmic ¡Constraints ¡ Dodelson ¡& ¡Lykken ¡2014 ¡ 20 � Scott Dodelson � 7/30/14 �

  21. Inflation � FNAL Theoretical Astrophysics: 
 A Tradition of Finding Cosmic Probes of BSM Physics � 21 � Scott Dodelson � 7/30/14 �

Recommend


More recommend