dark matter and bayesian approach to susy models
play

Dark Matter and Bayesian Approach to SUSY Models Leszek Roszkowski - PowerPoint PPT Presentation

Dark Matter and Bayesian Approach to SUSY Models Leszek Roszkowski Univ. of Sheffield, England and Soltan Institute for Nuclear Studies, Warsaw, Poland L. Roszkowski, GGI, May 2010 p.1 Outline L. Roszkowski, GGI, May 2010 p.2


  1. Constrained MSSM (CMSSM) Kane, Kolda, LR, Wells (1993) ...“benchmark framework” for the LHC (...e.g., mSUGRA) At M GUT ≃ 2 × 10 16 GeV : M 1 = M 2 = m e g = m 1 / 2 gauginos scalars m 2 q i = m 2 l i = m 2 H b = m 2 H t = m 2 0 e e 3–linear soft terms A b = A t = A 0 radiative EWSB Ht tan 2 β m 2 Hb − m 2 − m 2 µ 2 = Z tan 2 β − 1 2 4+1 independent parameters: m 1 / 2 , m 0 , A 0 , tan β, sgn( µ ) well developed machinery to compute some useful mass relations: masses and couplings bino: m χ ≃ 0 . 4 m 1 / 2 neutralino χ mostly bino gluino e g : m e g ≃ 2 . 7 m 1 / 2 q 0 . 15 m 2 1 / 2 + m 2 τ 1 ≃ supersymmetric tau (stau) e τ 1 : m e 0 L. Roszkowski, GGI, May 2010 – p.9

  2. Earlier analyses of CMSSM very many papers L. Roszkowski, GGI, May 2010 – p.10

  3. Earlier analyses of CMSSM very many papers Until recently usual approach has been to: do fixed-grid scans of m 1 / 2 and m 0 for fixed tan β and A 0 apply constraints from LEP , BR( ¯ B → X s γ ) , Ω χ h 2 , EWSB, charged LSP , etc impose rigid (in/out) 1 σ or 2 σ ranges L. Roszkowski, GGI, May 2010 – p.10

  4. Earlier analyses of CMSSM very many papers Until recently usual approach has been to: do fixed-grid scans of m 1 / 2 and m 0 for fixed tan β and A 0 hep-ph/0404052 apply constraints from LEP , BR( ¯ B → X s γ ) , Ω χ h 2 , EWSB, charged LSP , etc impose rigid (in/out) 1 σ or 2 σ ranges obtain narrow “allowed” regions L. Roszkowski, GGI, May 2010 – p.10

  5. Earlier analyses of CMSSM very many papers Until recently usual approach has been to: do fixed-grid scans of m 1 / 2 and m 0 for fixed tan β and A 0 hep-ph/0404052 apply constraints from LEP , BR( ¯ B → X s γ ) , Ω χ h 2 , EWSB, charged LSP , etc impose rigid (in/out) 1 σ or 2 σ ranges obtain narrow “allowed” regions Shortcomings: hard to compare relative impact of various constraints hard to include TH + residual SM errors, etc. full scan of PS not feasible impossible to assess relative impact of var- ious constraints L. Roszkowski, GGI, May 2010 – p.10

  6. Earlier analyses of CMSSM very many papers Until recently usual approach has been to: do fixed-grid scans of m 1 / 2 and m 0 for fixed tan β and A 0 hep-ph/0404052 apply constraints from LEP , BR( ¯ B → X s γ ) , Ω χ h 2 , EWSB, charged LSP , etc impose rigid (in/out) 1 σ or 2 σ ranges obtain narrow “allowed” regions Shortcomings: hard to compare relative impact of various constraints hard to include TH + residual SM errors, etc. full scan of PS not feasible impossible to assess relative impact of var- ious constraints results in over-simplified predictions L. Roszkowski, GGI, May 2010 – p.10

  7. Bayesian Analysis of the CMSSM Apply to the CMSSM: recent development, led by 2 groups L. Roszkowski, GGI, May 2010 – p.11

  8. Bayesian Analysis of the CMSSM Apply to the CMSSM: recent development, led by 2 groups m = ( θ, ψ ) – model’s all relevant parameters L. Roszkowski, GGI, May 2010 – p.11

  9. Bayesian Analysis of the CMSSM Apply to the CMSSM: recent development, led by 2 groups m = ( θ, ψ ) – model’s all relevant parameters CMSSM parameters θ = m 1 / 2 , m 0 , A 0 , tan β relevant SM param’s ψ = M t , m b ( m b ) MS , α MS , α em ( M Z ) MS s L. Roszkowski, GGI, May 2010 – p.11

  10. Bayesian Analysis of the CMSSM Apply to the CMSSM: recent development, led by 2 groups m = ( θ, ψ ) – model’s all relevant parameters CMSSM parameters θ = m 1 / 2 , m 0 , A 0 , tan β relevant SM param’s ψ = M t , m b ( m b ) MS , α MS , α em ( M Z ) MS s ξ = ( ξ 1 , ξ 2 , . . . , ξ m ) : set of derived variables (observables): ξ ( m ) L. Roszkowski, GGI, May 2010 – p.11

  11. Bayesian Analysis of the CMSSM Apply to the CMSSM: recent development, led by 2 groups m = ( θ, ψ ) – model’s all relevant parameters CMSSM parameters θ = m 1 / 2 , m 0 , A 0 , tan β relevant SM param’s ψ = M t , m b ( m b ) MS , α MS , α em ( M Z ) MS s ξ = ( ξ 1 , ξ 2 , . . . , ξ m ) : set of derived variables (observables): ξ ( m ) d : data ( Ω CDM h 2 , b → sγ , m h , etc) L. Roszkowski, GGI, May 2010 – p.11

  12. Bayesian Analysis of the CMSSM Apply to the CMSSM: recent development, led by 2 groups m = ( θ, ψ ) – model’s all relevant parameters CMSSM parameters θ = m 1 / 2 , m 0 , A 0 , tan β relevant SM param’s ψ = M t , m b ( m b ) MS , α MS , α em ( M Z ) MS s ξ = ( ξ 1 , ξ 2 , . . . , ξ m ) : set of derived variables (observables): ξ ( m ) d : data ( Ω CDM h 2 , b → sγ , m h , etc) Bayes’ theorem: posterior pdf p ( θ, ψ | d ) = p ( d | ξ ) π ( θ,ψ ) p ( d ) p ( d | ξ ) = L : likelihood π ( θ, ψ ) : prior pdf likelihood × prior posterior = normalization factor p ( d ) : evidence (normalization factor) L. Roszkowski, GGI, May 2010 – p.11

  13. Bayesian Analysis of the CMSSM Apply to the CMSSM: recent development, led by 2 groups m = ( θ, ψ ) – model’s all relevant parameters CMSSM parameters θ = m 1 / 2 , m 0 , A 0 , tan β relevant SM param’s ψ = M t , m b ( m b ) MS , α MS , α em ( M Z ) MS s ξ = ( ξ 1 , ξ 2 , . . . , ξ m ) : set of derived variables (observables): ξ ( m ) d : data ( Ω CDM h 2 , b → sγ , m h , etc) Bayes’ theorem: posterior pdf p ( θ, ψ | d ) = p ( d | ξ ) π ( θ,ψ ) p ( d ) p ( d | ξ ) = L : likelihood π ( θ, ψ ) : prior pdf likelihood × prior posterior = normalization factor p ( d ) : evidence (normalization factor) usually marginalize over SM (nuisance) parameters ψ ⇒ p ( θ | d ) L. Roszkowski, GGI, May 2010 – p.11

  14. Impact of varying SM parameters L. Roszkowski, GGI, May 2010 – p.12

  15. Impact of varying SM parameters fix tan β , A 0 + all SM param’s 4000 3500 3000 m 0 (GeV) 2500 2000 1500 tan β =50 1000 A 0 =0 500 500 1000 1500 2000 m 1/2 (GeV) Relative probability density 0 0.2 0.4 0.6 0.8 1 L. Roszkowski, GGI, May 2010 – p.12

  16. Impact of varying SM parameters vary M t fix tan β , A 0 + all SM param’s 4000 4000 3500 3500 3000 3000 m 0 (GeV) m 0 (GeV) 2500 2500 2000 2000 1500 1500 M t varied tan β =50 1000 1000 tan β =50 A 0 =0 A 0 =0 500 500 500 1000 1500 2000 500 1000 1500 2000 m 1/2 (GeV) m 1/2 (GeV) Relative probability density Relative probability density 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 L. Roszkowski, GGI, May 2010 – p.12

  17. Impact of varying SM parameters vary α s fix tan β , A 0 + all SM param’s 4000 4000 3500 3500 3000 3000 m 0 (GeV) m 0 (GeV) 2500 2500 2000 2000 α s varied 1500 1500 tan β =50 tan β =50 1000 1000 A 0 =0 A 0 =0 500 500 500 1000 1500 2000 500 1000 1500 2000 m 1/2 (GeV) m 1/2 (GeV) Relative probability density Relative probability density 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 L. Roszkowski, GGI, May 2010 – p.12

  18. Impact of varying SM parameters vary α s fix tan β , A 0 + all SM param’s 4000 4000 3500 3500 3000 3000 m 0 (GeV) m 0 (GeV) 2500 2500 2000 2000 α s varied 1500 1500 tan β =50 tan β =50 1000 1000 A 0 =0 A 0 =0 500 500 500 1000 1500 2000 500 1000 1500 2000 m 1/2 (GeV) m 1/2 (GeV) Relative probability density Relative probability density 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 residual errors in SM parameters ⇒ strong impact on favoured SUSY ranges effect of varying A 0 , tan β also substantial L. Roszkowski, GGI, May 2010 – p.12

  19. Bayesian Analysis of the CMSSM L. Roszkowski, GGI, May 2010 – p.13

  20. Bayesian Analysis of the CMSSM θ = ( m 0 , m 1 / 2 , A 0 , tan β ) : CMSSM parameters ψ = ( M t , m b ( m b ) M S , α em ( M Z ) M S , α M S ) : SM (nuisance) parameters s L. Roszkowski, GGI, May 2010 – p.13

  21. Bayesian Analysis of the CMSSM θ = ( m 0 , m 1 / 2 , A 0 , tan β ) : CMSSM parameters ψ = ( M t , m b ( m b ) M S , α em ( M Z ) M S , α M S ) : SM (nuisance) parameters s priors – assume flat distributions and ranges as: CMSSM parameters θ 50 GeV < m 0 < 4 TeV 50 GeV < m 1 / 2 < 4 TeV | A 0 | < 7 TeV 2 < tan β < 62 flat priors: SM (nuisance) parameters ψ 160 GeV < M t < 190 GeV 4 GeV < m b ( m b ) M S < 5 GeV 0 . 10 < α M S < 0 . 13 s 127 . 5 < 1 /α em ( M Z ) M S < 128 . 5 L. Roszkowski, GGI, May 2010 – p.13

  22. Bayesian Analysis of the CMSSM θ = ( m 0 , m 1 / 2 , A 0 , tan β ) : CMSSM parameters ψ = ( M t , m b ( m b ) M S , α em ( M Z ) M S , α M S ) : SM (nuisance) parameters s priors – assume flat distributions and ranges as: CMSSM parameters θ 50 GeV < m 0 < 4 TeV 50 GeV < m 1 / 2 < 4 TeV | A 0 | < 7 TeV 2 < tan β < 62 flat priors: SM (nuisance) parameters ψ 160 GeV < M t < 190 GeV 4 GeV < m b ( m b ) M S < 5 GeV 0 . 10 < α M S < 0 . 13 s 127 . 5 < 1 /α em ( M Z ) M S < 128 . 5 vary all 8 (CMSSM+SM) parameters simultaneously, apply MCMC include all relevant theoretical and experimental errors L. Roszkowski, GGI, May 2010 – p.13

  23. Experimental Measurements (assume Gaussian distributions) L. Roszkowski, GGI, May 2010 – p.14

  24. Experimental Measurements (assume Gaussian distributions) SM (nuisance) parameter Mean Error µ σ (expt) M t 172.6 GeV 1.4 GeV m b ( m b ) M S 4.20 GeV 0.07 GeV α s 0.1176 0.0020 1 /α em ( M Z ) 127.955 0.030 L. Roszkowski, GGI, May 2010 – p.14

  25. Experimental Measurements (assume Gaussian distributions) SM (nuisance) parameter Mean Error µ σ (expt) new BR(¯ B → X s γ ) × 10 4 : M t 172.6 GeV 1.4 GeV SM: 3 . 15 ± 0 . 23 (Misiak & m b ( m b ) M S 4.20 GeV 0.07 GeV Steinhauser, Sept 06) used here α s 0.1176 0.0020 1 /α em ( M Z ) 127.955 0.030 L. Roszkowski, GGI, May 2010 – p.14

  26. Experimental Measurements (assume Gaussian distributions) SM (nuisance) parameter Mean Error µ σ (expt) new BR(¯ B → X s γ ) × 10 4 : M t 172.6 GeV 1.4 GeV SM: 3 . 15 ± 0 . 23 (Misiak & m b ( m b ) M S 4.20 GeV 0.07 GeV Steinhauser, Sept 06) used here α s 0.1176 0.0020 1 /α em ( M Z ) 127.955 0.030 Derived observable Mean Errors µ σ (expt) τ (th) M W 80 . 398 GeV 25 MeV 15 MeV sin 2 θ eff 16 × 10 − 5 15 × 10 − 5 0 . 23153 δa SUSY × 10 10 29 . 5 8 . 8 1 µ BR(¯ B → X s γ ) × 10 4 3 . 55 0 . 26 0 . 21 ∆ M B s 17.33 0.12 4.8 Ω χ h 2 0 . 1 Ω χ h 2 0.1099 0.0062 take w/o error: M Z = 91 . 1876(21) GeV , G F = 1 . 16637(1) × 10 − 5 GeV − 2 L. Roszkowski, GGI, May 2010 – p.14

  27. Experimental Limits Derived observable upper/lower Constraints limit ξ lim τ (theor.) 1 . 5 × 10 − 7 → 3 × 10 − 8 BR(B s → µ + µ − ) UL 14% m h LL 114 . 4 GeV ( 91 . 0 GeV ) 3 GeV ζ 2 h ≡ g 2 ZZh /g 2 f ( m h ) UL 3% ZZH SM m χ LL 50 GeV 5% m χ ± LL 103 . 5 GeV ( 92 . 4 GeV ) 5% 1 m ˜ LL 100 GeV ( 73 GeV ) 5% e R m ˜ 95 GeV ( 73 GeV ) LL 5% µ R m ˜ LL 87 GeV ( 73 GeV ) 5% τ 1 m ˜ LL 94 GeV ( 43 GeV ) 5% ν m ˜ LL 95 GeV ( 65 GeV ) 5% t 1 m ˜ LL 95 GeV ( 59 GeV ) 5% b 1 m ˜ 318 GeV LL 5% q m ˜ LL 233 GeV 5% g ( σ SI ∼ 100% ) UL WIMP mass dependent p Note: DM direct detection σ SI not applied due to astroph’l uncertainties (eg, local DM density) p L. Roszkowski, GGI, May 2010 – p.15

  28. The Likelihood: 1-dim case Take a single observable ξ ( m ) that has been measured (e.g., M W ) L. Roszkowski, GGI, May 2010 – p.16

  29. The Likelihood: 1-dim case Take a single observable ξ ( m ) that has been measured (e.g., M W ) c – central value, σ – standard exptal error L. Roszkowski, GGI, May 2010 – p.16

  30. The Likelihood: 1-dim case Take a single observable ξ ( m ) that has been measured (e.g., M W ) c – central value, σ – standard exptal error define χ 2 = [ ξ ( m ) − c ] 2 σ 2 L. Roszkowski, GGI, May 2010 – p.16

  31. The Likelihood: 1-dim case Take a single observable ξ ( m ) that has been measured (e.g., M W ) c – central value, σ – standard exptal error define χ 2 = [ ξ ( m ) − c ] 2 σ 2 assuming Gaussian distribution ( d → ( c, σ ) ): � � − χ 2 1 L = p ( σ, c | ξ ( m )) = 2 πσ exp √ 2 L. Roszkowski, GGI, May 2010 – p.16

  32. The Likelihood: 1-dim case Take a single observable ξ ( m ) that has been measured (e.g., M W ) c – central value, σ – standard exptal error define χ 2 = [ ξ ( m ) − c ] 2 σ 2 assuming Gaussian distribution ( d → ( c, σ ) ): � � − χ 2 1 L = p ( σ, c | ξ ( m )) = 2 πσ exp √ 2 when include theoretical error estimate τ (assumed Gaussian): σ → s = √ σ 2 + τ 2 TH error “smears out” the EXPTAL range L. Roszkowski, GGI, May 2010 – p.16

  33. The Likelihood: 1-dim case Take a single observable ξ ( m ) that has been measured (e.g., M W ) c – central value, σ – standard exptal error define χ 2 = [ ξ ( m ) − c ] 2 σ 2 assuming Gaussian distribution ( d → ( c, σ ) ): � � − χ 2 1 L = p ( σ, c | ξ ( m )) = 2 πσ exp √ 2 when include theoretical error estimate τ (assumed Gaussian): σ → s = √ σ 2 + τ 2 TH error “smears out” the EXPTAL range for several uncorrelated observables (assumed Gaussian): � � − � χ 2 L = exp i i 2 L. Roszkowski, GGI, May 2010 – p.16

  34. Probability maps of the CMSSM L. Roszkowski, GGI, May 2010 – p.17

  35. Probability maps of the CMSSM arXiv:0705.2012 Roszkowski, Ruiz & Trotta (2007) 4 MCMC scan 3.5 Bayesian analysis 3 relative probability density fn 2.5 m 0 (TeV) flat priors 2 68% total prob. – inner contours 1.5 95% total prob. – outer contours 1 0.5 CMSSM 2-dim pdf p ( m 0 , m 1 / 2 | d ) µ >0 0.5 1 1.5 2 favored: m 0 ≫ m 1 / 2 (FP region) m 1/2 (TeV) Relative probability density 0 0.2 0.4 0.6 0.8 1 L. Roszkowski, GGI, May 2010 – p.17

  36. Probability maps of the CMSSM arXiv:0705.2012 Roszkowski, Ruiz & Trotta (2007) 4 MCMC scan 3.5 Bayesian analysis 3 relative probability density fn 2.5 m 0 (TeV) flat priors 2 68% total prob. – inner contours 1.5 95% total prob. – outer contours 1 0.5 CMSSM 2-dim pdf p ( m 0 , m 1 / 2 | d ) µ >0 0.5 1 1.5 2 favored: m 0 ≫ m 1 / 2 (FP region) m 1/2 (TeV) Relative probability density 0 0.2 0.4 0.6 0.8 1 similar study by Allanach+Lester(+Weber) see also, Ellis et al (EHOW, χ 2 approach, no MCMC, they fix SM parameters!) L. Roszkowski, GGI, May 2010 – p.17

  37. Probability maps of the CMSSM arXiv:0705.2012 Roszkowski, Ruiz & Trotta (2007) 4 MCMC scan 3.5 Bayesian analysis 3 relative probability density fn 2.5 m 0 (TeV) flat priors 2 68% total prob. – inner contours 1.5 95% total prob. – outer contours 1 0.5 CMSSM 2-dim pdf p ( m 0 , m 1 / 2 | d ) µ >0 0.5 1 1.5 2 favored: m 0 ≫ m 1 / 2 (FP region) m 1/2 (TeV) Relative probability density 0 0.2 0.4 0.6 0.8 1 unlike others (except for A+L), we vary also SM parameters L. Roszkowski, GGI, May 2010 – p.17

  38. SUSY: Prospects for direct detection Bayesian analysis, MCMC scan of 8 params (4 SUSY+4 SM) L. Roszkowski, GGI, May 2010 – p.18

  39. SUSY: Prospects for direct detection Bayesian analysis, MCMC scan of 8 params (4 SUSY+4 SM) CMSSM: global scan, MCMC Roszkowski, Ruiz & Trotta (2007) −4 CMSSM, µ > 0 −5 EDELWEISS−I −6 XENON−10 SI (pb)] ZEPLIN−III CDMS−II −7 Log[ σ p −8 −9 −10 −11 0.2 0.4 0.6 0.8 1 m χ (TeV) internal (external): 68% ( 95% ) region L. Roszkowski, GGI, May 2010 – p.18

  40. SUSY: Prospects for direct detection Bayesian analysis, MCMC scan of 8 params (4 SUSY+4 SM) CMSSM: global scan, Nested Sampling XENON -100 and CDMS-II: < 10 − 7 pb: σ SI ∼ p also Zeplin–III ⇒ already explore 68% region (large m 0 ≫ m 1 / 2 ⇒ heavy squarks) largely beyond LHC reach internal (external): 68% ( 95% ) region L. Roszkowski, GGI, May 2010 – p.18

  41. SUSY: Prospects for direct detection Bayesian analysis, MCMC scan of 8 params (4 SUSY+4 SM) CMSSM: global scan, Nested Sampling XENON -100 and CDMS-II: < 10 − 7 pb: σ SI ∼ p also Zeplin–III ⇒ already explore 68% region (large m 0 ≫ m 1 / 2 ⇒ heavy squarks) largely beyond LHC reach Roszkowski, Ruiz & Trotta (2007) 4 3.5 3 m 0 (TeV) 2.5 2 1.5 LHC 1 0.5 CMSSM internal (external): 68% ( 95% ) region µ >0 0.5 1 1.5 2 m 1/2 (TeV) L. Roszkowski, GGI, May 2010 – p.18

  42. SUSY: Prospects for direct detection Bayesian analysis, MCMC scan of 8 params (4 SUSY+4 SM) CMSSM: global scan, Nested Sampling XENON -100 and CDMS-II: < 10 − 7 pb: σ SI ∼ p also Zeplin–III ⇒ already explore 68% region (large m 0 ≫ m 1 / 2 ⇒ heavy squarks) largely beyond LHC reach internal (external): 68% ( 95% ) region next: ZENON-100 - sensitivity reach ∼ 10 − 9 pb ⇒ later this year future: 1 tonne detectors - sensitivity reach ∼ 10 − 10 pb ⇒ in a few years L. Roszkowski, GGI, May 2010 – p.18

  43. SUSY: Prospects for direct detection Bayesian analysis, MCMC scan of 8 params (4 SUSY+4 SM) CMSSM: global scan, Nested Sampling XENON -100 and CDMS-II: < 10 − 7 pb: σ SI ∼ p also Zeplin–III ⇒ already explore 68% region (large m 0 ≫ m 1 / 2 ⇒ heavy squarks) largely beyond LHC reach internal (external): 68% ( 95% ) region ⇒ DD: prospects look very good L. Roszkowski, GGI, May 2010 – p.18

  44. CMSSM: Impact of priors L. Roszkowski, GGI, May 2010 – p.19

  45. CMSSM: Impact of priors flat in m 0 , m 1 / 2 L. Roszkowski, GGI, May 2010 – p.19

  46. CMSSM: Impact of priors flat in m 0 , m 1 / 2 flat in log( m 0 ) , log( m 1 / 2 ) L. Roszkowski, GGI, May 2010 – p.19

  47. CMSSM: Impact of priors flat in m 0 , m 1 / 2 flat in log( m 0 ) , log( m 1 / 2 ) still strong prior dependence (data not yet constraining enough) both priors: most regions above some 10 − 10 pb ⇒ good news for DM expt < 400 − 500 GeV ⇒ additional vital info LHC reach: m χ ∼ L. Roszkowski, GGI, May 2010 – p.19

  48. Bayesian vs frequentist CMSSM: L. Roszkowski, GGI, May 2010 – p.20

  49. Bayesian vs frequentist CMSSM: L. Roszkowski, GGI, May 2010 – p.20

  50. Bayesian vs frequentist CMSSM: Buchmueller, et al (09) ( 10 − 44 cm 2 = 10 − 8 pb) L. Roszkowski, GGI, May 2010 – p.20

  51. Bayesian vs frequentist CMSSM: Buchmueller, et al (09) ( 10 − 44 cm 2 = 10 − 8 pb) reasonable agreement L. Roszkowski, GGI, May 2010 – p.20

  52. SUSY models and DM direct detection Bayesian analysis, log priors L. Roszkowski, GGI, May 2010 – p.21

  53. SUSY models and DM direct detection Bayesian analysis, log priors Constrained MSSM DM: mostly gaugino L. Roszkowski, GGI, May 2010 – p.21

  54. SUSY models and DM direct detection Bayesian analysis, log priors Constrained Next -to-MSSM (CNMSSM) add singlet Higgs S ; λS 3 Constrained MSSM Lopez−Fogliani, Roszkowski, Ruiz de Austri, Varley (2009) −4 EDELWEISS−I −5 ZEPLIN−II −6 ZEPLIN−III XENON−10 SI (pb)] CDMS−II −7 Log[ σ p −8 −9 CNMSSM µ >0 −10 log prior −11 0.2 0.4 0.6 0.8 1 m χ (TeV) DM: mostly gaugino singlino DM? very rare ⇒ fairly similar pattern L. Roszkowski, GGI, May 2010 – p.21

  55. SUSY models and DM direct detection Bayesian analysis, log priors Constrained Next -to-MSSM (CNMSSM) add singlet Higgs S ; λS 3 Constrained MSSM Lopez−Fogliani, Roszkowski, Ruiz de Austri, Varley (2009) −4 EDELWEISS−I −5 ZEPLIN−II −6 ZEPLIN−III XENON−10 SI (pb)] CDMS−II −7 Log[ σ p −8 −9 CNMSSM µ >0 −10 log prior −11 0.2 0.4 0.6 0.8 1 m χ (TeV) DM: mostly gaugino singlino DM? very rare ⇒ fairly similar pattern many collider signatures also (likely to be) similar ⇒ LHC, DM expt: it may be hard to discriminate among models L. Roszkowski, GGI, May 2010 – p.21

  56. SUSY models and DM direct detection Bayesian analysis, flat priors L. Roszkowski, GGI, May 2010 – p.22

  57. SUSY models and DM direct detection Bayesian analysis, flat priors Constrained MSSM L. Roszkowski, GGI, May 2010 – p.22

  58. SUSY models and DM direct detection Bayesian analysis, flat priors Non -Universal Higgs Model (NUHM) m 2 H u , m 2 H d � = m 2 0 Constrained MSSM Roszkowski, Ruiz, Trotta, Tsai & Varley (2009) −4 EDELWEISS−I −5 ZEPLIN−II XENON−10 −6 ZEPLIN−III SI (pb)] CDMS−II −7 Log[ σ p −8 −9 NUHM, µ > 0 −10 log prior −11 0.5 1 1.5 m χ (TeV) higgsino DM region at m χ ≃ 1 TeV L. Roszkowski, GGI, May 2010 – p.22

  59. SUSY models and DM direct detection Bayesian analysis, flat priors Non -Universal Higgs Model (NUHM) m 2 H u , m 2 H d � = m 2 0 Constrained MSSM Roszkowski, Ruiz, Trotta, Tsai & Varley (2009) −4 EDELWEISS−I −5 ZEPLIN−II XENON−10 −6 ZEPLIN−III SI (pb)] CDMS−II −7 Log[ σ p −8 −9 NUHM, µ > 0 −10 log prior −11 0.5 1 1.5 m χ (TeV) higgsino DM region at m χ ≃ 1 TeV ⇒ fairly similar patterns, except for 1 TeV higgsino in NUHM L. Roszkowski, GGI, May 2010 – p.22

  60. SUSY models and DM direct detection Bayesian analysis, flat priors Non -Universal Higgs Model (NUHM) m 2 H u , m 2 H d � = m 2 0 Constrained MSSM Roszkowski, Ruiz, Trotta, Tsai & Varley (2009) −4 EDELWEISS−I −5 ZEPLIN−II XENON−10 −6 ZEPLIN−III SI (pb)] CDMS−II −7 Log[ σ p −8 −9 NUHM, µ > 0 −10 log prior −11 0.5 1 1.5 m χ (TeV) higgsino DM region at m χ ≃ 1 TeV ⇒ fairly similar patterns, except for 1 TeV higgsino in NUHM collider signatures also similar ⇒ LHC, DM: it may be hard to distinguish models L. Roszkowski, GGI, May 2010 – p.22

  61. Indirect detection L. Roszkowski, GGI, May 2010 – p.23

  62. Indirect detection look for traces of WIMP annihilation in the MW halo ( γ ’s, e + ’s, ¯ p , ...) detection prospects often strongly depend on astrophysical uncertainties (halo models, astro bgnd, ...) Much activity in connection with: L. Roszkowski, GGI, May 2010 – p.23

  63. Indirect detection look for traces of WIMP annihilation in the MW halo ( γ ’s, e + ’s, ¯ p , ...) detection prospects often strongly depend on astrophysical uncertainties (halo models, astro bgnd, ...) Much activity in connection with: PAMELA L. Roszkowski, GGI, May 2010 – p.23

  64. Indirect detection look for traces of WIMP annihilation in the MW halo ( γ ’s, e + ’s, ¯ p , ...) detection prospects often strongly depend on astrophysical uncertainties (halo models, astro bgnd, ...) Much activity in connection with: PAMELA Fermi L. Roszkowski, GGI, May 2010 – p.23

  65. Indirect detection look for traces of WIMP annihilation in the MW halo ( γ ’s, e + ’s, ¯ p , ...) detection prospects often strongly depend on astrophysical uncertainties (halo models, astro bgnd, ...) Much activity in connection with: PAMELA Fermi H.E.S.S, ATCs, ... L. Roszkowski, GGI, May 2010 – p.23

  66. SUSY and positron flux Bayesian posterior probability maps BF=1 L. Roszkowski, GGI, May 2010 – p.24

  67. SUSY and positron flux Bayesian posterior probability maps BF=1 CMSSM, flat priors, NFW Roszkowski, Ruiz, Silk & Trotta (2008) −1 10 PAMELA 08 −2 Moore+ac HEAT 00 10 HEAT 94+95 Φ e+ /( Φ e+ + Φ e− ) CAPRICE 94 NFW+ac −3 10 −4 10 NFW −5 10 68% NFW profile, BF = 1 CMSSM, µ > 0 −6 10 95% −7 10 −8 10 0.1 1 10 100 400 E e+ (GeV) L. Roszkowski, GGI, May 2010 – p.24

  68. SUSY and positron flux Bayesian posterior probability maps BF=1 NUHM, flat priors, NFW CMSSM, flat priors, NFW 0 Roszkowski, Ruiz, Trotta, Tsai & Varley (2009) 10 Roszkowski, Ruiz, Silk & Trotta (2008) 0.62< m χ /TeV <1.1 (68% range) −1 10 −1 10 PAMELA 08 NUHM, µ >0 −2 Moore+ac Φ e+ /( Φ e+ + Φ e− ) b g HEAT 00 n 10 d . HEAT 94+95 −2 NFW, BF=1 10 Φ e+ /( Φ e+ + Φ e− ) CAPRICE 94 NFW+ac −3 flat prior 10 CAPRICE 94 HEAT 94+95 HEAT 00 −3 −4 PAMELA 10 10 NFW −5 10 −4 68% NFW profile, BF = 1 10 CMSSM, µ > 0 −6 10 −5 10 95% −7 10 −1 0 1 2 10 10 10 10 −8 E e+ (GeV) 10 0.1 1 10 100 400 E e+ (GeV) m χ (GeV) 200 400 600 800 1000 1200 L. Roszkowski, GGI, May 2010 – p.24

  69. SUSY and positron flux Bayesian posterior probability maps BF=1 NUHM, flat priors, NFW CMSSM, flat priors, NFW 0 Roszkowski, Ruiz, Trotta, Tsai & Varley (2009) 10 Roszkowski, Ruiz, Silk & Trotta (2008) 0.62< m χ /TeV <1.1 (68% range) −1 10 −1 10 PAMELA 08 NUHM, µ >0 −2 Moore+ac Φ e+ /( Φ e+ + Φ e− ) b g HEAT 00 n 10 d . HEAT 94+95 −2 NFW, BF=1 10 Φ e+ /( Φ e+ + Φ e− ) CAPRICE 94 NFW+ac −3 flat prior 10 CAPRICE 94 HEAT 94+95 HEAT 00 −3 −4 PAMELA 10 10 NFW −5 10 −4 68% NFW profile, BF = 1 10 CMSSM, µ > 0 −6 10 −5 10 95% −7 10 −1 0 1 2 10 10 10 10 −8 E e+ (GeV) 10 0.1 1 10 100 400 E e+ (GeV) m χ (GeV) 200 400 600 800 1000 1200 simple unified SUSY models (CMSSM, NUHM): inconsistent with PAMELA’s e + claim ...even for unrealistically large boost factors (flux scales linearly with boost factor) L. Roszkowski, GGI, May 2010 – p.24

  70. Gamma Rays From DM Annihilation L. Roszkowski, GGI, May 2010 – p.25

  71. Gamma Rays From DM Annihilation WIMP pair -annihilation → WW, ZZ, ¯ qq , . . . → diffuse γ radiation (+ γγ , γZ lines) L. Roszkowski, GGI, May 2010 – p.25

Recommend


More recommend