cse141 introduction to computer architecture
play

cse141: Introduction to Computer Architecture Steven Swanson - PowerPoint PPT Presentation

cse141: Introduction to Computer Architecture Steven Swanson Sanath Kumar Vineet Kumar Bharathan Balaji 1 Todays Agenda What is architecture? Why is it important? At the highest level, where is architecture today? Where is it


  1. cse141: Introduction to Computer Architecture Steven Swanson Sanath Kumar Vineet Kumar Bharathan Balaji 1

  2. Today’s Agenda • What is architecture? • Why is it important? • At the highest level, where is architecture today? Where is it going? • What’s in this class? 2

  3. What is architecture? • How do you build a machine that computes? • Quickly, safely, cheaply, efficiently, in technology X, for application Y, etc. Civilization advances by extending the number of important operations which we can perform without thinking about them. -- Alfred North Whitehead

  4. Orientation The internet

  5. Orientation The internet

  6. Orientation The internet

  7. Orientation System Bus IO Radio (PCI) Memory Memory Storage Power Power Memory Memory Architecture begins about here.

  8. Orientation System Bus IO Radio (PCI) Memory Memory Storage Power Power Memory Memory Architecture begins about here.

  9. Orientation System Bus IO Radio (PCI) Memory Memory Storage Memory IO Power CPU Power Memory Memory Architecture begins about here.

  10. You are here

  11. You are here cse141

  12. You are here cse141 cse141

  13. The processors go here…

  14. The processors go here…

  15. The processors go here…

  16. The processors go here…

  17. The processors go here…

  18. The processors go here…

  19. The processors go here…

  20. The processors go here…

  21. The processors go here…

  22. The processors go here…

  23. The processors go here…

  24. The processors go here…

  25. The processors go here…

  26. The processors go here…

  27. The processors go here…

  28. The processors go here…

  29. The processors go here…

  30. Abstractions of the Physical World… Physics/Materials Devices Micro-architecture Processors Architectures

  31. Abstractions of the Physical World… cse241a/ Physics/ This Course ECE dept Chemistry/ Material science Physics/Materials Devices Micro-architecture Processors Architectures

  32. …for the Rest of the System JVM Processor Software Compilers Languages Architectures Abstraction Engineers/ Applications

  33. …for the Rest of the System cse121 cse131 cse130 cseEverythingElse JVM Processor Software Compilers Languages Architectures Abstraction Engineers/ Applications

  34. Why study architecture? • As CEs or CSs you should understand how computers work • Processors are the basis for everything in CS (except theory) • They are where the rubber meets the road. • Performance is important • Faster machines make applications cheaper • Understanding hardware is essential to understanding how systems behave • It’s cool! • Microprocessors are among the most sophisticated devices manufactured by people • How they work (and even that they work) as reliably and as quickly as they do is amazing. • Architecture is undergoing two simulatenous revolution -- Multicore and mobility • The future is uncertain • Opportunities for innovation abound. 11

  35. Performance and You! • Live Demo 12

  36. Building Microprocessors • Chips are made of silicon • Aka “sand” • The most abundant element in the earth’s crust. • Extremely pure (<1 part per billion) • This is the purest stuff people make

  37. Building Chips

  38. Building Chips • Photolithography Silicon Wafer

  39. Building Chips • Photolithography SiO2 Silicon Wafer Silicon Wafer Grow silicon dioxide

  40. Building Chips • Photolithography Resist SiO2 SiO2 Silicon Wafer Silicon Wafer Silicon Wafer Grow silicon dioxide Apply photo resist

  41. Building Chips • Photolithography Mask Mask Resist Resist SiO2 SiO2 SiO2 Silicon Wafer Silicon Wafer Silicon Wafer Silicon Wafer Grow silicon dioxide Apply photo resist Expose to UV

  42. Building Chips • Photolithography Mask Mask Resist Resist SiO2 SiO2 SiO2 Silicon Wafer Silicon Wafer Silicon Wafer Silicon Wafer Grow silicon dioxide Apply photo resist Expose to UV SiO2 Silicon Wafer Patterned resist

  43. Building Chips • Photolithography Mask Mask Resist Resist SiO2 SiO2 SiO2 Silicon Wafer Silicon Wafer Silicon Wafer Silicon Wafer Grow silicon dioxide Apply photo resist Expose to UV SiO2 Silicon Wafer Silicon Wafer Patterned resist Etch SiO2

  44. Building Chips • Photolithography Mask Mask Resist Resist SiO2 SiO2 SiO2 Silicon Wafer Silicon Wafer Silicon Wafer Silicon Wafer Grow silicon dioxide Apply photo resist Expose to UV SiO2 Met Silicon Wafer Silicon Wafer Silicon Wafer Patterned resist Deposit metal Etch SiO2

  45. Building Chips • Photolithography Mask Mask Resist Resist SiO2 SiO2 SiO2 Silicon Wafer Silicon Wafer Silicon Wafer Silicon Wafer Grow silicon dioxide Apply photo resist Expose to UV SiO2 Met Met Silicon Wafer Silicon Wafer Silicon Wafer Silicon Wafer Etch SiO2 Patterned resist Deposit metal Etch SiO2

  46. Building Blocks: Transistors

  47. Building Blocks: Wires

  48. Building Blocks: Wires

  49. State of the art CPU • 1-2 Billion xtrs • 32nm features • 3-4Ghz • Several 100 designers • >5 years • $3Billion fab • >150 GFLOPS 19

  50. Current state of architecture

  51. Since 1940

  52. Since 1940 • Plug boards -> Java • Hand assembling -> GCC • No OS -> Windows Vista

  53. Since 1940 • Plug boards -> Java • 50,000 x speedup • Hand assembling -> GCC • >1,000,000,000 x density • No OS -> Windows (Moore’s Law) Vista Flexible performance is a liquid asset

  54. Moore’s Law: Raw transistors

  55. The Importance of Architecture • We design smarter and smarter processors • Process technology gives us about 20% performance improvement per year • Until 2004, performance grew at about 40% per year. • Architecture is responsible for half the gains in CPU performance

  56. Single CPU Performance 24

  57. Single CPU Performance 10000 specINT95 specINT2000 specINT2006 1000 Relative Performance 100 10 1 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 Year 24

  58. Single CPU Performance 10000 10000 specINT95 specINT95 specINT2000 specINT2000 specINT2006 specINT2006 47% per year 1000 1000 Relative Performance Relative Performance 100 100 10 10 1 1 1990 1990 1992 1992 1994 1994 1996 1996 1998 1998 2000 2000 2002 2002 2004 2004 2006 2006 2008 2008 2010 2010 Year Year 24

  59. Single CPU Performance 10000 10000 10000 specINT95 specINT95 specINT95 specINT2000 specINT2000 specINT2000 specINT2006 specINT2006 specINT2006 47% per year 47% per year 39% per year 1000 1000 1000 Relative Performance Relative Performance Relative Performance 100 100 100 10 10 10 1 1 1 1990 1990 1990 1992 1992 1992 1994 1994 1994 1996 1996 1996 1998 1998 1998 2000 2000 2000 2002 2002 2002 2004 2004 2004 2006 2006 2006 2008 2008 2008 2010 2010 2010 Year Year Year 24

  60. Single CPU Performance 10000 10000 10000 10000 specINT95 specINT95 specINT95 specINT95 specINT2000 specINT2000 specINT2000 specINT2000 specINT2006 specINT2006 specINT2006 specINT2006 47% per year 47% per year 47% per year 39% per year 39% per year 25% per year 1000 1000 1000 1000 Relative Performance Relative Performance Relative Performance Relative Performance 100 100 100 100 10 10 10 10 1 1 1 1 1990 1990 1990 1990 1992 1992 1992 1992 1994 1994 1994 1994 1996 1996 1996 1996 1998 1998 1998 1998 2000 2000 2000 2000 2002 2002 2002 2002 2004 2004 2004 2004 2006 2006 2006 2006 2008 2008 2008 2008 2010 2010 2010 2010 Year Year Year Year 24

  61. The clock speed addiction specINT2000 specINT2006 5000 4000 Clock speed (Mhz) 3000 2000 1000 0 1996 1998 2000 2002 2004 2006 2008 2010 Year • Clock speed is the biggest contributor to power • Chip manufactures (Intel, esp.) pushed clock speeds very hard in the 90s and early 2000s. • Doubling the clock speed increases power by 2-8x • Clock speed scaling is essentially finished. 25

  62. Power 1000 100 2 Watts/cm 10 1 1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ 1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ 26

  63. Power 1000 100 2 Watts/cm 10 1 1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ 1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ 26

  64. Power 1000 100 2 Watts/cm 10 1 1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ 1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ 26

  65. Power 1000 100 2 Watts/cm 10 1 1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ 1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ 26

  66. Power 1000 100 2 Watts/cm 10 1 1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ 1.5µ 1µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.1µ 0.07µ 26

Recommend


More recommend