CSE/NB 528 Lecture 10: Recurrent Networks (Chapter 7) Lecture figures are from Dayan & Abbott’s book R. Rao, CSE528: Lecture 10 1 http://people.brandeis.edu/~abbott/book/index.html What’s on our smörgåsbord today? F Computation in Linear Recurrent Networks Eigenvalue analysis F Non-linear Recurrent Networks Eigenvalue analysis F Covered in: Chapter 7 in Dayan & Abbott R. Rao, CSE528: Lecture 10 2
Linear Recurrent Networks d v W M v u v dt Output Decay Input Feedback R. Rao, CSE528: Lecture 10 3 What can a Linear Recurrent Network do? d v W M v u v dt On-Board analysis based on eigenvectors of recurrent weight matrix M R. Rao, CSE528: Lecture 10 4
Example of a Linear Recurrent Network Each neuron codes for an angle between -180 to +180 degrees Recurrent connections M = cosine function of relative angle + M ( , ' ) cos( ' ) - - Excitation nearby, Inhibition further away ( - ’ ) Is M symmetric? M ( , ’ )= M ( ’ , ’ )? R. Rao, CSE528: Lecture 10 5 Example of a Linear Recurrent Network M ( , ' ) cos( ' ) Each neuron has a preferred angle between -180 to +180 degrees 1 All eigenvalues = 0 except 0 . 9 10 i.e. ampli fication 1 1 - 1 (See section 7.4 in Dayan & Abbott) R. Rao, CSE528: Lecture 10 6
Example: Amplification in a Linear Recurrent Network Input Output (noisy cosine) Preferred angle of neuron R. Rao, CSE528: Lecture 10 7 Example: Memory for Maintaining Eye Position Input: Bursts of spikes from brain stem oculomotor neurons Output: Memory of eye position in medial vestibular nucleus R. Rao, CSE528: Lecture 10 8
Nonlinear Recurrent Networks d v ( W M ) v F u v dt Output Decay Input Feedback (Convenient to use W u = h ) R. Rao, CSE528: Lecture 10 9 Amplification in a Nonlinear Recurrent Network Input Output (F = rectification nonlinearity: F(x) = x if x > 0 and 0 o.w.) 1 1 . 9 (but stable due to rectification) R. Rao, CSE528: Lecture 10 10
Selective “Attention” in a Nonlinear Recurrent Network Input Output Network performs “winner -takes- all” input selection R. Rao, CSE528: Lecture 10 11 Gain Modulation in a Nonlinear Recurrent Network Inputs Outputs Changing the level of input multiplies the output R. Rao, CSE528: Lecture 10 12
Gain Modulation in Parietal Cortex Neurons Gaze 2 Gaze 1 Example of a gain- Responses of Area 7a neuron modulated tuning curve R. Rao, CSE528: Lecture 10 13 Short-Term Memory Storage in a Nonlinear Recurrent Network Local Input + Output Network maintains Background a memory of previous activity when input is turned off. Similar to “short - Turn off input Output term memory” or “working memory” in prefrontal cortex Memory is maintained by recurrent activity R. Rao, CSE528: Lecture 10 14
What about Non-Symmetric Recurrent Networks? F Example: Network of Excitatory (E) and Inhibitory (I) Neurons Connections can’t be symmetric: Why? dv E v M v M v E E EE E EI I E dt dv I v M v M v I I II I IE E I dt Simple 2-neuron network representing interacting populations One excitatory neuron and one inhibitory neuron R. Rao, CSE528: Lecture 10 15 Stability Analysis of Nonlinear Recurrent Networks d v General case : ( ) f v dt Suppose v is a fixed point (i.e., f ( v ) 0) ε d v d ε Near v , v ( t ) v ( t ) (i.e., ) dt dt f ε Taylor expansion : f ( v ( t ) ) f ( v ) ( t ) v v ε J is the “Jacobian d v f d ε ε . . ( ) ( ) i e t J t matrix” dt v dt v Derive solution for v ( t ) based on eigen-analysis of J Eigenvalues of J determine stability of network (see Mathematical Appendix A.3 in textbook) R. Rao, CSE528: Lecture 10 16
Example: Non-Symmetric Recurrent Networks F Specific Network of Excitatory (E) and Inhibitory (I) Neurons: 10 ms 1.25 -1 -10 dv E v M v M v E E EE E EI I E dt dv I v M v M v I I II I IE E I dt 0 1 10 Parameter we will vary to study the network R. Rao, CSE528: Lecture 10 17 Linear Stability Analysis dv v M v M v Take derivatives of right E E EE E EI I E dt hand side with respect to E both v E and v I dv v M v M v I I II I IE E I dt I F Matrix of derivatives (the “ Jacobian Matrix”): ( M 1 ) M EE EI E E J ( 1 ) M M IE II I I R. Rao, CSE528: Lecture 10 18
Compute the Eigenvalues F Jacobian Matrix: ( M 1 ) M EE EI E E J ( 1 ) M M IE II I I F Its two eigenvalues (obtained by solving det ( J – I) = 0): 2 1 ( 1 ) ( 1 ) 1 1 M M M M M M EE II EE II EI IE 4 2 E I E I E I Different dynamics depending on real and imaginary parts of (see pages 410-412 of Appendix in Text) R. Rao, CSE528: Lecture 10 19 Phase Plane and Eigenvalue Analysis I = 30 ms 50ms dv E 10 v 1 . 25 v v 10 E E I dt dv I 0 10 v v v I I I E dt R. Rao, CSE528: Lecture 10 20
Damped Oscillations in the Network I = 30 ms (negative real eigenvalue) Stable Fixed Point R. Rao, CSE528: Lecture 10 21 Unstable Behavior and Limit Cycle I = 50 ms (positive real eigenvalue) Limit cycle R. Rao, CSE528: Lecture 10 22
Oscillatory Activity in Real Networks Sniff Sniff Sniff Activity in rabbit (or wabbit) olfactory bulb during 3 sniffs (see Chapter 7 in textbook for details) R. Rao, CSE528: Lecture 10 23 F Things to do: That’s all folks! Start reading Chapter 8 in D & A Homework #3 assigned today Start working on final project R. Rao, CSE528: Lecture 10 24
Recommend
More recommend