cs 171 visualization
play

CS 171: Visualization Process & Visual Variables Hanspeter - PowerPoint PPT Presentation

CS 171: Visualization Process & Visual Variables Hanspeter Pfister pfister@seas.harvard.edu This Week Friday lab 10:30-11 am in MD G115 HW1 due today, group reflection due Monday Readings for next week Chapter 1 Group


  1. CS 171: Visualization Process & Visual Variables Hanspeter Pfister pfister@seas.harvard.edu

  2. This Week • Friday lab 10:30-11 am in MD G115 • HW1 due today, group reflection due Monday • Readings for next week Chapter 1

  3. Group Reflection • Optional - due on Monday • Not if you are taking late days • Work in groups to improve your HW • Must write a self reflection about improvements • Grade will take both parts into account • Need serious effort on individual part

  4. Learning Catalytics • Go to https://learningcatalytics.com/ • Go to Courses -> CS 171 • Enter session ID: 697815

  5. Survey Results • 213 responses, 31% female, 65% male, 3% N/A • 202 registered, 115 College, 82 DCE, 5 Other

  6. Survey Results

  7. Survey Results

  8. Survey Results

  9. Survey Results

  10. Survey Results

  11. Last Week

  12. Design Excellence “Well-designed presentations of interesting data are a matter of substance, of statistics, and of design.” E. Tufte

  13. Graphical Integrity • Missing scales • Distortions • Lie factor

  14. Washington Post, 2012

  15. Design Principles • Maximize Data-Ink Ratio • Avoid Chartjunk • Increase Data Density • Subjective Dimensions

  16. Graphic Design • C ontrast • R epetition • A lignment • P roximity

  17. Design Critique

  18. Outline • Process • Data Model • Image Model • Psychophysics • Graphical Perception

  19. Process

  20. Reading

  21. Tamara Munzner • Associate Professor at UBC, Canada • Ph.D. Stanford 2000 • Worked at Geometry Center, Compaq Research • Widely published in InfoVis

  22. user-centered design target usability engineering participatory design translate design evaluate implement validate

  23. user-centered design target usability engineering participatory design translate design evaluate implement validate

  24. Miriah Meyer • NSF CI Postdoctoral Fellow at Harvard • Ph.D. Utah 2008 • Works with genomics and molecular biology data

  25. target choose a specific domain define research question(s) translate find & clean the data design implement validate

  26. Pathline - A Tool for Comparative Functional Genomics Data

  27. target translate formulate data analysis tasks exploratory data analysis design transform & summarize data implement validate

  28. Exploratory Data Analysis “The greatest value of a picture is when it forces us to notice what we never expected to see.” John Tukey

  29. Ascombe’s Quartet Same mean, variance, correlation coefficient, and linear regression line http://upload.wikimedia.org/wikipedia/commons/b/b6/Anscombe.svg

  30. Interactive Exploration • Construct visualization to address questions • Inspect “answers” and pose new questions • Transform the data appropriately • Repeat!

  31. t1 s6 g1 0.2 t1 t2 metabolic s5 gene expression g1 g2 0.2 0.4 1.0 t1 t2 t3 t4 pathways s4 g2 g3 g1 1.0 0.0 -0.7 0.2 0.4 1.0 1 glycolysis t1 t2 t3 t4 t5 s3 g3 g4 g2 -0.7 0.8 1.0 1.0 0.0 0.0 0.0 g1 0.2 0.4 1.0 1.0 1.0 t1 t1 t2 t2 t3 t3 t4 t4 t5 t5 t6 t6 s2 • 6000 genes and g4 g5 g3 1.0 0.0 -0.5 -0.7 0.8 1.0 1 g2 1.0 0.0 0.0 0.0 1.0 g1 g1 0.2 0.2 0.4 0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 • 10 to 50 pathways t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6 s1 140 metabolites g5 g6 g4 -0.5 0.8 -0.7 1.0 0.0 0.2 0.5 g3 -0.7 0.8 1.0 1.0 0.8 g2 1.0 0.0 0.0 0.0 1.0 0.8 g1 g1 0.2 0.4 1.0 1.0 1.0 1.0 0.2 0.4 1.0 1.0 1.0 1.0 t1 t2 t3 t4 t5 t6 of interest t1 t2 t3 t4 t5 t6 g6 g7 g5 -0.7 0.5 -1.0 -0.5 0.8 0.5 -0.3 g4 1.0 0.0 0.2 0.5 1.0 g3 -0.7 0.8 1.0 1.0 0.8 0.2 g2 1.0 0.0 0.0 0.0 1.0 0.8 g1 g1 0.2 0.4 1.0 1.0 1.0 1.0 0.2 0.4 1.0 1.0 1.0 1.0 • 6 time points g7 g8 g6 -1.0 -0.3 -0.5 • inputs/outputs -0.7 0.5 0.8 -0.7 g5 -0.5 0.8 0.5 -0.3 -0.5 g4 1.0 0.0 0.2 0.5 1.0 0.2 g3 -0.7 0.8 1.0 1.0 0.8 0.2 m1 1.0 0.0 0.0 0.0 1.0 0.8 g8 g7 -0.5 0.0 -1.0 -0.3 0.4 -1 g6 -0.7 0.5 0.8 -0.7 -1.0 g5 -0.5 0.8 0.5 -0.3 -0.5 -0.5 called metabolites g4 • 14 species of yeast 1.0 0.0 0.2 0.5 1.0 0.2 g2 -0.7 0.8 1.0 1.0 0.8 0.2 tca cycle g8 -0.5 0.0 0.0 -0.7 g7 -1.0 -0.3 0.4 -1.0 -1.0 g6 -0.7 0.5 0.8 -0.7 -1.0 0.5 g5 -0.5 0.8 0.5 -0.3 -0.5 -0.5 m2 1.0 0.0 0.2 0.5 1.0 0.2 • directed graph • 3D table g8 -0.5 0.0 0.0 -0.7 -0.5 g7 -1.0 -0.3 0.4 -1.0 -1.0 -1.0 g6 -0.7 0.5 0.8 -0.7 -1.0 0.5 g3 -0.5 0.8 0.5 -0.3 -0.5 -0.5 g8 -0.5 0.0 0.0 -0.7 -0.5 -0.7 g7 -1.0 -0.3 0.4 -1.0 -1.0 -1.0 m3 -0.7 0.5 0.8 -0.7 -1.0 0.5 g8 • aggregate time series -0.5 0.0 0.0 -0.7 -0.5 -0.7 g7 -1.0 -0.3 0.4 -1.0 -1.0 -1.0 phylogeny similarity scores g8 -0.5 0.0 0.0 -0.7 -0.5 -0.7 for a gene/metabolite S. cer S. mik over species • evolutionary S. bay relationship S. bayuv s1 • similarity of expression C. gla , S. cas across species • binary K. pol s2 aggregate , = 0.83 K. wal tree K. lac • aggregate: Pearson, s3 , S. klu ... Spearman, others D. han C. alb Y. lip • quantitative value S. jap S. pom

  32. target translate design design visual encodings design interactions implement sketch many ideas! validate

  33. Blake Walsh, Gabriel Trevino, Antony Bett

  34. Bang Wong

  35. target translate design implement use code “sketches” define data structures validate find efficient algorithms

  36. target what? 80% translate how? 20% design implement validate

  37. target translate design is the abstraction right? implement does it support the tasks? does it provide new insights? validate

  38. Nested Validation target translate design implement T. Munzner, A Nested Model for Visualization Design and Validation

  39. Process Books

  40. “A methodological approach to visualization development makes effective design decisions salient.” - Miriah Meyer

  41. Data Model

  42. Nominal Categorical Qualitative Ordinal Interval Ratio On the theory of scales and measurements [S. Stevens, 46]

  43. Data Types • Nominal (categorical) (N) Are = or ≠ to other values Apples, Oranges, Bananas,... • Ordinal (ordered) (O) Obey a < relationship Small, medium, large • Quantitative (Q) Can do arithmetic on them 10 inches, 23 inches, etc.

  44. Quantitative • Q - Interval (location of zero arbitrary) Dates: Jan 19; Location: (Lat, Long) Only differences (i.e., intervals) can be compared • Q - Ratio (zero fixed) Measurements: Length, Mass, Temp, ... Origin is meaningful, can measure ratios & proportions On the theory of scales and measurements [S. Stevens, 46]

  45. Item

  46. Attribute

  47. 1 = Quantitative 2 = Nominal 3 = Ordinal

  48. 1 = Quantitative 2 = Nominal 3 = Ordinal

  49. Nominal /Ordinal = Dimensions Describe the data, independent variables Quantitative = Measures Numbers to be analyzed, dependent variables

  50. Data vs. Conceptual Models • Data Model: Low-level description of the data Set with operations, e.g., floats with +, -, /, * • Conceptual Model: Mental construction Includes semantics, supports reasoning Data Conceptual 1D floats temperature 3D vector of space floats

  51. Data vs. Conceptual Model • From data model... 32.5, 54.0, -17.3, … (floats) • using conceptual model... Temperature • to data type Continuous to 4 significant figures (Q) Hot, warm, cold (O) Burned vs. Not burned (N) Based on slide from Munzner

  52. Image Model

  53. Jacques Bertin • French cartographer [1918-2010] • Semiology of Graphics [1967] • Theoretical principles for visual encodings

  54. Bertin’s Visual Variables Marks Points Lines Areas Channels Position Size (Grey)Value Texture Color Orientation Shape Semiology of Graphics [J. Bertin, 67]

  55. Mapping to Data Types Nominal Ordinal Quantitative Position ✔ ✔ ✔ ~ Size ✔ ✔ ~ (Grey)Value ✔ ✔ ~ Texture ✔ ✖ Color ✔ ✖ ✖ Orientation ✔ ✖ ✖ Shape ✔ ✖ ✖ ✔ = Good ~ = OK ✖ = Bad

  56. Jock Mackinlay, 1986 Decreasing [Mackinlay, Automating the Design of Graphical Presentations of Relational Information, 1986]

  57. Stolte & Hanrahan, 2002 [“Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases” Chris Stolte, Diane Tang, and Pat Hanrahan, 2002]

  58. Psychophysics

  59. Weber’s Law (1795–1878) ∆ I Just-Noticeable Difference = k Weber fraction ( constant! ) Base intensity I • Sensitivity to changes in stimulus decreases when stimulus magnitude increases • True for intensity, length, weight, sound, time, etc.

  60. ∆ I = k ∆ I = k I J. H. Krantz

  61. ∆ I = k ∆ I = k I J. H. Krantz

  62. ∆ I = k ∆ I = k I J. H. Krantz

  63. Fechner’s Law (1801–1887) S = k log( I ) Sensation Intensity • The relationship between stimulus and perception is logarithmic • I.e., we perceive brightness on a logarithmic scale

  64. Based on slide from Mazur

Recommend


More recommend