cryogenic silicon fabry perot cavities
play

Cryogenic Silicon Fabry-Perot Cavities: Laser Stabilization with - PowerPoint PPT Presentation

Cryogenic Silicon Fabry-Perot Cavities: Laser Stabilization with sub-Hertz Linewidth Matthew Arran, University of Cambridge Mentors: Rana Adhikari, David Yeaton-Massey Summary Introduction Methodology Prior progress Analysis


  1. Cryogenic Silicon Fabry-Perot Cavities: Laser Stabilization with sub-Hertz Linewidth Matthew Arran, University of Cambridge Mentors: Rana Adhikari, David Yeaton-Massey

  2. Summary  Introduction  Methodology  Prior progress  Analysis  Results

  3. Introduction Background  Laser frequency noise  External reference cavities  Noise sources:  Seismic noise  Shot noise  Thermal noise  Brownian  Thermoelastic  Thermorefractive

  4. Introduction Aim Work with silicon cavity at cryogenic temperatures  Reduce Brownian noise:  S x ( f )=− 4 k b T ℑ[ H (ω)] By fluctuation-dissipation theorem [1] :  ω Reduce seismic noise:  Require high quality factor Q at low temperature  Silicon has Q ~ 10 8 at around 100K  Control thermoelastic noise:  CTE of Silicon has zeros at 18K & 123K [2]  [1] K. Numata, A. Kemery, J. Camp , “Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities” Phys. Rev. Lett. 93 (2004) [2] P. B. Karlmann, K. J. Klein, P. G. Halverson, R. D. Peters, M. B. Levine et al. “ Linear Thermal Expansion Measurements of Single Crystal Silicon for Validation of Interferometer Based Cryogenic Dilatometer” AIP Conf. Proc. 824, 35 (2006)

  5. Introduction Applications [3]  Precision of atomic clocks NIST-F1 uncertainty 3×10 -16  Optical atomic clocks promise O (10 -17 )   Gravitational wave observation Thermal noise limiting after standard quantum limit [4]  [4] S. J. Waldman [3] NIST “The Advanced LIGO Gravitational Wave Detector” “The Advanced LIGO Gravitational Wave Detector”

  6. Methodology Optical system  Laser PDH locked to reference cavity  Initially single cavity Use spectrum analyzer for initial result   Later work possible with two cavities Measure beat frequency to analyse noise  [5] [5] Image from D. Yeaton-Massey

  7. Methodology Thermal system  Experimental chamber evacuated to 10 -5 torr  Cavity cooled to 123K  Use of radiation shields  Fine temperature control High precision sensors  Resistive heaters  Temperature controller 

  8. Prior progress Prior progress  Optical system [Insert picture of optics] Tabletop optics in place   Cryostat Designed  Manufactured  Pressure tested   Experimental chamber Parts manufactured  Attachments designed  Assembly tested 

  9. Prior progress Project aims  Test cryostat cooldown Prepare cryostat   Analyse thermal system Propagation of temperature perturbations  Effect of heaters  Communication with control system 

  10. Analysis System schematic

  11. Analysis Analytic approach θ 0  Construct differential equations d 4 −θ 1 4 )+α 2 (θ 2 −θ 1 )+β 2 (θ 2 4 −θ 1 4 )+ P 1 dt ( C 1 θ 1 )=α 1 (θ 0 −θ 1 )+β 1 (θ 0 θ 2 θ 3 d θ 1 4 −θ 2 4 )+α 3 (θ 3 −θ 2 )+β 3 (θ 3 4 −θ 2 4 )+ P 2 dt ( C 2 θ 2 )=α 2 (θ 1 −θ 2 )+β 2 (θ 1 d 4 −θ 3 4 )+ P 3 dt ( C 3 θ 3 )=α 3 (θ 2 −θ 3 )+β 3 (θ 2 θ i =̂ θ i +δ i , P i = ̂  Linearise about equilibrium, with P i +π i δ i = 1 [ J i − 1 δ i − 1 −( I i + J i )δ i + I i + 1 δ i + 1 +π i + O (δ 2 ) ] ˙ Γ i for α i + a i ( ̂ θ i −̂ θ i − 1 ) + 4 ̂ β i ̂ 3 + b i ( ̂ 4 −̂ ) 4 I i = ̂ θ i θ i θ i − 1 α i + 1 + a ' i + 1 ( ̂ θ i −̂ θ i + 1 ) + 4 ̂ β i + 1 ̂ 3 + b ' i + 1 ( ̂ 4 −̂ ) 4 J i = ̂ θ i θ i θ i + 1 Γ i = ̂ C i + c i ̂ θ i  Derive small-perturbation transfer functions  Determine and substitute in parameter values Two methods used 

  12. Analysis 1. Fit D.E.s to cooldown  Cool cold plate to 77.4K  Use known heat capacities  Assume α i , β i constant  Choose values to best fit D.E. solution to data

  13. Analysis 2. Fit T.F.s to step responses  Analytically-derived transfer functions have form: ̃ δ 2 ( s ) a ( s + b ) A B δ 0 ( s )= ( s −μ 1 )( s −μ 2 )= + ̃ s −μ 1 s −μ 2 ̃ δ 3 ( s ) c C C δ 0 ( s )= ( s −μ 1 )( s −μ 2 )= − ̃ s −μ 1 s −μ 2  Step outer shield temperature  Choose values A , B , C , μ 1 , μ 2 to best fit step responses to data

  14. Results Predictive ability Error in predictions by method 1. Error in predictions by method 2.

  15. Results Estimated transfer functions Zeros: -1.4×10 -5 -1.9×10 -6 Zeros: -2.5×10 -6 -1.6×10 -6 Poles: -2.5×10 -5 Poles: -1.4×10 -5 -1.2×10 -5 Poles: -1.4×10 -5 -1.2×10 -5 -7.0×10 -6 -1.9×10 -6 -1.4×10 -6 -1.9×10 -6 -1.4×10 -6 -1.4×10 -6 Method 1. Method 2. Magnitude Magnitude of a zero of a pole

  16. Poles and zeros Cold plate to Outer shield to Outer shield to Outer radiation Inner shield Dummy cavity shield 1 st method 2 nd method 1 st method 2 nd method % diff % diff Poles: -2.5×10 -5 -1.4×10 -5 -1.2×10 -5 14% -1.4×10 -5 -1.2×10 -5 14% -7.0×10 -6 -1.9×10 -6 -1.4×10 -6 26% -1.9×10 -6 -1.4×10 -6 26% -1.4×10 -6 Zeros: -1.4×10 -5 -2.5×10 -6 -1.6×10 -6 36% -1.9×10 -6

  17. Acknowledgements David Yeaton-Massey Rana Adhikari LIGO SFP, FASA offices NSF

Recommend


More recommend