crab waist interaction region for fcc ee and the arc
play

Crab waist interaction region for FCC-ee and the arc first attempt - PowerPoint PPT Presentation

Crab waist interaction region for FCC-ee and the arc first attempt (one quarter of the ring IR: v. 6-13-2, arc: v14) A. Bogomyagkov Budker Institute of Nuclear Physics Novosibirsk November-December, 2014 A. Bogomyagkov (BINP) FCC-ee crab


  1. Crab waist interaction region for FCC-ee and the arc first attempt (one quarter of the ring IR: v. 6-13-2, arc: v14) A. Bogomyagkov Budker Institute of Nuclear Physics Novosibirsk November-December, 2014 A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 1 / 22

  2. Parameters for crab waist Z W H tt Energy [GeV] 45 80 120 175 Perimeter [km] 100 Crossing angle [mrad] 30 Particles per bunch [10 11 ] 1 4 4.7 4 Number of bunches 29791 739 127 33 Energy spread [10 − 3 ] 1.1 2.1 2.4 2.6 Emittance hor. [nm] 0.14 0.44 1 2.1 Emittance ver. [pm] 1 2 2 4.3 β ∗ x /β ∗ y [m] 0.5 / 0.001 Luminosity / IP [ 10 34 cm − 2 s − 1 ] 212 36 9 1.3 Energy loss / turn [GeV] 0.03 0.3 1.7 7.7 A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 2 / 22

  3. Final Focus layout ∆ σ Trajectories at 20 G0=-9.4 kGs/cm, R0=1.2 cm, x=3.5 cm, E=175000 MeV ∆ θ Rectangles G1=9.3 kGs/cm, R1=1.9 cm, x=14.2 cm, 2 =30 mrad 0.15 ° ° 20 10 ° represent 15 0.1 bare 0.05 - e X, m apertures. 0 + e -0.05 -0.1 L [m] -0.15 0 1 2 3 4 5 6 7 8 S, m Q0 3.6 σ Trajectories at 55 Q1 2 0.02 0.015 0.01 0.005 Y, m R [m] 0 -0.005 Q0 0.012 -0.01 Q1 0.019 -0.015 -0.02 0 1 2 3 4 5 6 7 8 S, m A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 3 / 22

  4. Final Focus layout: sketch of solenoids ∆ σ Trajectories at 20 G0=-9.4 kGs/cm, R0=1.2 cm, x=3.5 cm, E= 175 GeV ∆ θ G1=9.3 kGs/cm, R1=1.9 cm, x=14.2 cm, 2 =30 mrad ° ° 0.2 20 10 ° 15 0.15 0.1 0.05 - e X, m 0 H=2 T + e -0.05 -0.1 -0.15 H=1 T H=1 T -0.2 0 1 2 3 4 5 6 7 8 S, m A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 4 / 22

  5. Interaction Region optical functions FFT CCSY CCSX+CCT CRAB AB+MS 100. 0.15 1/ 2 ) x (m) β x 1 / 2 β y 1 / 2 D x 1/ 2 (m 0.12 90. D 0.10 1/ 2 ), β y 80. 0.08 70. 1/ 2 (m 0.05 60. x β 0.03 50. 0.0 40. -0.02 30. -0.05 20. -0.08 10. -0.10 0.0 -0.12 0.0 140. 280. 420. 560. 700. s (m) A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 5 / 22

  6. Final Focus Telescope B0 B1 120. 0.10 β x β y 1/ 2 ) 1 / 2 1 / 2 D x D x (m) 0.09 1/ 2 (m 100. 0.08 β 0.07 80. 0.06 60. 0.05 0.04 40. 0.03 0.02 20. 0.01 0.0 0.0 0.0 10. 20. 30. 40. 50. s (m) A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 6 / 22

  7. Final Focus Telescope: beta chromaticity 3.5 6000. ∆β /β ∆β /β ∆β/β ∆β/β y y x x 5500. 3.0 5000. 2.5 4500. 4000. 2.0 3500. 1.5 3000. 2500. 1.0 2000. 0.5 1500. 1000. 0.0 500. -0.5 0.0 -0.020 -0.005 0.010 dp A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 7 / 22

  8. Y Chromaticity Correction Section B2 B3 B4 10. 0.14 β x β y D x [*10**( 3)] D x (m) 9. 0.13 8. 0.12 7. 0.11 6. 0.10 β (m) 5. 0.09 4. 0.08 3. 0.07 2. 0.06 1. 0.05 0.0 0.04 40. 60. 80. 100. 120. 140. s (m) A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 8 / 22

  9. X Chromaticity Correction Section B5 B6 B7 B8 500. 0.10 β x D x β y β (m) D x (m) 450. 0.08 400. 0.05 350. 0.03 300. 0.0 250. -0.02 200. -0.05 150. -0.08 100. -0.10 50. 0.0 -0.13 140. 180. 220. 260. 300. s (m) A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 9 / 22

  10. Chromaticity Correction Telescope B9 325.0 0.0 β x β y D x β (m) D x (m) -0.01 292.5 -0.02 260.0 -0.03 227.5 -0.04 195.0 -0.05 162.5 -0.06 -0.07 130.0 -0.08 97.5 -0.09 65.0 -0.10 32.5 -0.11 0.0 -0.12 310. 320. 330. 340. 350. 360. s (m) A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 10 / 22

  11. CRAB, AB, MS, DS sections CRAB AB + MS DS 650. 0.16 β x (m), β y (m) x (m) β x β y D x 585. D 0.14 520. 0.12 455. 0.10 390. 325. 0.08 260. 0.06 195. 0.04 130. 0.02 65. 0.0 0.0 350. 450. 550. 650. 750. s (m) A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 11 / 22

  12. Interaction Region layout L B φ [m] [T] [mrad] 1.5 B0 10.5 0.06 1 B1 10.5 0.21 3.7 1 B2 10.5 0.21 3.8 0.5 - e X, m B3 14.5 0.21 5.2 0 CRAB SEXTUPOLE e + B4 14.5 0.21 5.2 -0.5 B5 14.5 0.03 0.6 -1 B6 14.5 0.01 0.2 -1.5 0 100 200 300 400 500 600 700 B7 14.5 -0.13 -3.2 Z, m Before the achromatic bend at the B8 14.5 -0.13 -3.2 crab sextupole each beam is B9 14.5 -0.11 -2.8 diverging at ± 4 . 4 mrad. B10 10.5 0.06 1 A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 12 / 22

  13. Quarter layout 0 - e + e -2000 -4000 -6000 X, m -8000 -10000 -12000 -14000 -16000 0 2000 4000 6000 8000 10000 12000 14000 16000 Z, m A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 13 / 22

  14. Chromaticity: Montague functions One Forth of FCC 4000. 1.0 x , W y W x W y D x ’ x / d δ ( m ) W 0.8 3500. 0.6 3000. dD 0.4 0.2 2500. 0.0 2000. -0.2 1500. -0.4 -0.6 1000. -0.8 500. -1.0 0.0 -1.2 0.0 7.5 15.0 22.5 s (m) [*10**( 3)] A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 14 / 22

  15. Chromaticity: Montague functions One Forth of FCC 200. 1.0 x , W y W x W y D x ’ x / d δ ( m ) W 180. 0.8 160. 0.6 dD 140. 0.4 120. 0.2 100. 0.0 80. -0.2 60. -0.4 40. -0.6 20. 0.0 -0.8 0.0 3. 6. 9. s (m) [*10**( 3)] A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 15 / 22

  16. Energy acceptance I: [-3.3%;+0.9%] One Forth of FCC 127.00 86.00 Value ∆ Q ( 1 . 5 %) Qx Qx Qy Qy 126.95 85.95 Q x 126 . 54 126.90 85.90 Q ′ 0 0 x Q ′′ − 81 − 0 . 009 126.85 85.85 x − 3 . 6 · 10 4 Q ′′′ − 0 . 02 126.80 85.80 x − 2 . 3 · 10 6 Q ′′′′ 0 . 005 126.75 85.75 x Q y 85 . 57 126.70 85.70 Q ′ 0 0 126.65 85.65 y Q ′′ − 33 − 0 . 004 126.60 85.60 y − 2 . 9 · 10 5 Q ′′′ − 0 . 16 126.55 85.55 y − 2 . 7 · 10 6 Q ′′′′ − 0 . 006 126.50 85.50 y -0.04 -0.02 0.0 0.02 0.04 dp A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 16 / 22

  17. Energy acceptance II: [-1.8%;+1.4%] One Forth of FCC 127.00 86.00 Value ∆ Q ( 1 . 5 %) Qx Qx Qy Qy 126.95 85.95 Q x 126 . 54 126.90 85.90 Q ′ 0 0 x Q ′′ − 73 − 0 . 008 126.85 85.85 x − 4 . 1 · 10 4 Q ′′′ − 0 . 02 126.80 85.80 x − 2 . 7 · 10 6 Q ′′′′ 0 . 006 126.75 85.75 x Q y 85 . 57 126.70 85.70 Q ′ 0 0 126.65 85.65 y Q ′′ − 53 − 0 . 006 126.60 85.60 y − 5 · 10 4 Q ′′′ − 0 . 028 126.55 85.55 y − 8 · 10 6 Q ′′′′ − 0 . 017 126.50 85.50 y -0.04 -0.02 0.0 0.02 0.04 dp A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 17 / 22

  18. Energy acceptance II: [-1.8%;+1.4%] (full ring) FCC 506.70 343.0 Value ∆ Q ( 1 . 5 %) Qx Qx Qy Qy 506.63 342.9 Q x 506 . 16 506.56 342.8 Q ′ 0 0 x Q ′′ − 276 − 0 . 03 506.49 342.7 x − 1 . 5 · 10 5 Q ′′′ − 0 . 08 506.42 342.6 x − 9 . 9 · 10 6 Q ′′′′ − 0 . 02 506.35 342.5 x Q y 342 . 28 506.28 342.4 Q ′ 0 0 506.21 342.3 y Q ′′ − 216 − 0 . 02 506.14 342.2 y − 1 . 8 · 10 5 Q ′′′ − 0 . 1 506.07 342.1 y − 3 · 10 7 Q ′′′′ − 0 . 06 506.00 342.0 y -0.04 -0.02 0.0 0.02 0.04 dp A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 18 / 22

  19. Energy acceptance III: momentum compaction One Forth of FCC: momentum compaction 0.6000E-02 malfa [*10**( -3)] malfa 0.5500E-02 0.5000E-02 0.4500E-02 0.4000E-02 0.3500E-02 0.3000E-02 0.2500E-02 0.2000E-02 0.1500E-02 0.1000E-02 0.5000E-03 0.0 -0.04 -0.02 0.0 0.02 0.04 dp A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 19 / 22

  20. Parameters of one quarter of the ring tt Energy [GeV] 175 Perimeter [m] 24747.6 5 . 7 · 10 − 6 Momentum compaction Emittance hor. [nm] 1.8 Energy spread [10 − 3 ] 1.6 β ∗ x /β ∗ y [m] 0.5 / 0.001 Energy loss / turn [GeV] 2.15 A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 20 / 22

  21. Summary I What is done? Closed ring is ready, files are in 1 /afs/cern.ch/eng/fcc/ee/TLEP_V14_IR_6-13-2 At the end of IR the distance between the beams is 3 m. 2 Energy acceptance [-1.8%;+1.4%]. 3 Chromaticity of momentum compaction is reasonable. 4 What is next? Redo the matching section between IR and the arc (accommodate 1 the extra angle of IR into the arc). Change phase advance per cell to odd multiple of π/ 4. 2 Four families of sextupoles in the arc and octupoles in IR. 3 Dynamic aperture studies, 6d tracking. 4 A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 21 / 22

  22. Summary II Questions Is it possible to build required final focus quadrupoles? 1 How longitudinal detector field will be compensated? 2 Is there a need to increase L ∗ ? 3 Do positions and fields of the dipoles allow for synchrotron 4 radiation shielding and detector background minimization? How much length is needed for RF cavities in the IR? 5 Feedback, please! 6 A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 22 / 22

Recommend


More recommend