cosmic ray science on the international space station iss
play

Cosmic Ray Science on the International Space Station (ISS) KSETA - PowerPoint PPT Presentation

Cosmic Ray Science on the International Space Station (ISS) KSETA Workshop 2014 Freudenstadt, 21.-23.07.2014 Stefanie Falk* and Stefan Zeissler | Institut fr Experimentelle Kernphysik (EKP), * Institut fr Kernphysik (IKP) KIT


  1. Cosmic Ray Science on the International Space Station (ISS) KSETA Workshop 2014 – Freudenstadt, 21.-23.07.2014 Stefanie Falk* and Stefan Zeissler † | † Institut für Experimentelle Kernphysik (EKP), * Institut für Kernphysik (IKP) KIT – University of the State of Baden-Wuerttemberg and www.kit.edu National Research Center of the Helmholtz Association

  2. Outline (1) Science ● Cosmic particles spectrum ● Measurement methods ● Scientific Goals of AMS-02 vs. JEM-EUSO (2) The Instruments ● AMS-02 ● JEM-EUSO ● Science on the International Space Station (ISS) (3) Measurement Methods ● Particle Fluxes ● Lepton Flux with AMS-02 ● Measurement with JEM-EUSO (4) First Results and Outlook (5) Summary and Keywords 2 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  3. Cosmic Particles Spectra  E  γ Particle with energy per area, time and incoming angle Flattened with energy squared In this tutorial: What is a flux and how JEM-EUSO wide range of energies and do we measure it? very regular 3 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  4. Cosmic Ray Spectrum knee GZK-threshold ankle extragal. galactic 1 particle per km² and century! 4 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  5. Measurement Methods I Direct Detection CREAM VI Low energy regime:  Rather high flux  Particles get absorbed in DK-1 with PAMELA the atmosphere Bring particle detectors to the top of the atmosphere or AMS-02 on ISS • Balloons to space: • Satellites • Space Station 5 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  6. Measurement Methodes II Extensive Air Shower (EAS) shower maximum radiation 6 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  7. Light Emission Fluorescence Cherenkov isotropic excitation forward ionisation peaked Fluorescence yield Frank-Tamm formula (1 particle yield) 7 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  8. Goals of… JEM-EUSO AMS-02  Detection of EECR particles  Cosmic rays composition and fluxes  Propagation models  Source identification  Origin of cosmic rays  Reason for flux suppression  Recovery of the spectrum  Search for dark matter  Explorative potential  Low energy particles  Multi messenger  exposure to manned space flights UHE gamma rays   Anti matter UHE neutrinos   Exotic matter (Strangeletts)  Galactic magnetic fields  Relativity and quantum gravity “The most exciting objective of AMS is to  Atmospheric science probe the unknown; to search for Nightglow  phenomena which exist in nature that we Lightning, Plasma discharges  have not yet imagined nor had the tools Meteors, meteoroids  to discover” S.C.C. Ting 8 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  9. Outline (1) Science ● Cosmic particles spectrum ● Measurement methods ● Goals of AMS-02 vs. JEM-EUSO (2) The Instruments ● AMS-02 ● JEM-EUSO ● Science on the International Space Station (ISS) (3) Measurement Methods ● Particle Fluxes ● Lepton Flux with AMS-02 ● Measurement with JEM-EUSO (4) First Results and Outlook (5) Summary and Keywords 9 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  10. The AMS-02 Detector  Weight 8500 kg  Volume 64 cubic meters  Power 2500 watts  Data downlink 9 Mbps (average) 10 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  11. The AMS-02 Detector TRD:  Tracking  Charge by dE/dx  Gamma factor → Lepton Identification TOF:  Relative velocity  Charge by dE/dx  Trigger and veto counter Tracker:  Particle trajectory  Charge by dE/dx  Rigidity → Charge sign  Relative velocity RICH:  Mass ECAL:  Energy of Leptons  3D shower reconstruction → Lepton identification 11 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  12. JEM-EUSO Nadir mode Tilt mode 12 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  13. Science on the ISS Why do astroparticle physics on the International Space Station (ISS)? ISS Provides: Power  Data up- and down-link  High mass possible  Long term measurement  (at least till 2020) Maneuvering  → Focus on the detector, not space flight! 13 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  14. Data Flow AMS Laptop at ISS TDRS Satellites K U -Band S Band White Sands Stations MSC → JSC AMS POCC at CERN 14 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  15. Detector Monitoring Detector is monitored in 5 shift positions 24/7 at the Payload Operation Control Center (POCC) at CERN and a backup POCC in Taiwan:  Temperatures  Data stream/acquisition  Data quality  Detector status LEAD PM TEE Thermal DATA 15 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  16. Outline (1) Science ● Cosmic particles spectrum ● Measurement methods ● Goals of AMS-02 vs. JEM-EUSO (2) The Instruments ● AMS-02 ● JEM-EUSO ● Science on the International Space Station (ISS) (3) Measurement Methods ● Particle Fluxes ● Lepton Flux with AMS-02 ● Measurement with JEM-EUSO (4) First Results and Outlook (5) Summary and Keywords 16 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  17. Particle Fluxes Describes the number of particles with certain energy per measurement area, time and incoming angle independent from detector.     N E Φ E =   ε ε ΔE Acc E T Trig Sel exp Ingredients for the flux: N: Number of particles found Acc: Acceptance [m^2 sr] is the effective detection area Ɛ_Trig: Efficiency of Trigger Ɛ_Sel : Efficiency in event selection T_exp: Exposure Time [s] Δ E: Energy bin width [eV] 17 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  18. AMS-02 Electron Flux Particle identification 1.) Cut on ECAL estimator to reduce proton background Cut on ECAL BDT 2.) Total number of electrons is obtained by a fit using TRD estimator 18 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  19. AMS-02 Electron Flux Acceptance Geometric: Simulation: Shot MC electrons frome plane A within incoming angle α.  α Acc = A N   α Triggered Acc = A • Not easy for more complicated geometries N • Does not include inefficiencies Generated 19 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  20. AMS-02 Electron Flux Exposure Time Earth magnetic field bends low energy particles trajectory. Geomagnetic cutoff leads to energy dependance in exposure time. Cutoff Energy [GeV] 20 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  21. JEM-EUSO Measurements 21 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  22. JEM-EUSO Measurements UV light emission by EAS • Fluorescence (Isotropic) • Cherenkov (forward beamed) Detection of • Direct fluorescence light • Scattered light • Ground reflected light Detection influenced by • Transmission in atmosphere • Optics transmission • Quantum efficiency of MAPMT 22 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  23. JEM-EUSO Aperture and Exposure Key effects a) EAS development in the atmosphere b) Detector properties (FOV, orbit, etc.) → η 0 = 20% c) Steady background light (nightglow, moonlight, etc.) → 500 photons/(m² sr ns) d) Atmospheric transmittance (especially clouds) → κ C = 72% e) Variant background light (anthropogenic light, lightning, etc.) → f loc =10% 23 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  24. JEM-EUSO Aperture and Exposure Geometrical aperture Annual Exposure 0.13 Overall Exposure → Exposure 9 x 7000 km² yr sr 24 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

  25. JEM-EUSO Calibration Main issues a) Atmospheric conditions → IR camera, LIDAR + GDAS data b) Background light levels → Slow acquisition mode c) Timing uncertainties d) Tilt angle e) Pointing errors ( H ISS (t) ) → Altitude monitoring f) Temperature variation g) Age of the instrument  Global Light System (GLS)  World wide network of ground-based stations  Airborne stations  Xenon flasher lamps  Steerable laser 25 21.07.2014 CR Science in Space Stefanie Falk | IKP KSETA Workshop 2014 – Freudenstadt Stefan Zeissler | EKP

Recommend


More recommend