control and inverse problems for degenerate parabolic

Control and inverse problems for degenerate parabolic operators - PowerPoint PPT Presentation

Control and inverse problems for degenerate parabolic operators Piermarco Cannarsa University of Rome Tor Vergata Inverse Problems, Control and Shape Optimization April 2 4, 2012 Ecole Polytechnique, Palaiseau, France P. Cannarsa


  1. existence, uniqueness, regularity one space dimension a ∈ C ([ 0 , 1 ]) ∩ C 1 (] 0 , 1 ]) and a > 0 on ] 0 , 1 ] οΏ½ οΏ½ οΏ½ u t βˆ’ a ( x ) u x x = f in Q T =] 0 , 1 [ Γ— ] 0 , T [ u ( x , 0 ) = u 0 ( x ) u ( t , 1 ) = 0 + b.c. at x = 0 u 0 ∈ L 2 ( 0 , 1 ) , f ∈ L 2 ( Q T ) Campiti, Metafune, Pallara (1998) 1 / a ∈ L 1 ( 0 , 1 ) weakly degenerate case: οΏ½ 1 οΏ½ οΏ½ οΏ½ H 1 u ∈ L 2 ( 0 , 1 ) au 2 a ( 0 , 1 ) = x dx < ∞ & u ( 0 ) = 0 = u ( 1 ) οΏ½ 0 ∈ L 1 ( 0 , 1 ) strongly degenerate case: 1 / a / οΏ½ 1 οΏ½ οΏ½ οΏ½ H 1 u ∈ L 2 ( 0 , 1 ) au 2 a ( 0 , 1 ) = x dx < ∞ & u ( 1 ) = 0 οΏ½ 0 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 8 / 46

  2. existence, uniqueness, regularity one space dimension a ∈ C ([ 0 , 1 ]) ∩ C 1 (] 0 , 1 ]) and a > 0 on ] 0 , 1 ] οΏ½ οΏ½ οΏ½ u t βˆ’ a ( x ) u x x = f in Q T =] 0 , 1 [ Γ— ] 0 , T [ u ( x , 0 ) = u 0 ( x ) u ( t , 1 ) = 0 + b.c. at x = 0 u 0 ∈ L 2 ( 0 , 1 ) , f ∈ L 2 ( Q T ) Campiti, Metafune, Pallara (1998) 1 / a ∈ L 1 ( 0 , 1 ) weakly degenerate case: οΏ½ 1 οΏ½ οΏ½ οΏ½ H 1 u ∈ L 2 ( 0 , 1 ) au 2 a ( 0 , 1 ) = x dx < ∞ & u ( 0 ) = 0 = u ( 1 ) οΏ½ 0 ∈ L 1 ( 0 , 1 ) strongly degenerate case: 1 / a / οΏ½ 1 οΏ½ οΏ½ οΏ½ H 1 u ∈ L 2 ( 0 , 1 ) au 2 a ( 0 , 1 ) = x dx < ∞ & u ( 1 ) = 0 οΏ½ 0 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 8 / 46

  3. existence, uniqueness, regularity one space dimension a ∈ C ([ 0 , 1 ]) ∩ C 1 (] 0 , 1 ]) and a > 0 on ] 0 , 1 ] οΏ½ οΏ½ οΏ½ u t βˆ’ a ( x ) u x x = f in Q T =] 0 , 1 [ Γ— ] 0 , T [ u ( x , 0 ) = u 0 ( x ) u ( t , 1 ) = 0 + b.c. at x = 0 u 0 ∈ L 2 ( 0 , 1 ) , f ∈ L 2 ( Q T ) Campiti, Metafune, Pallara (1998) 1 / a ∈ L 1 ( 0 , 1 ) weakly degenerate case: οΏ½ 1 οΏ½ οΏ½ οΏ½ H 1 u ∈ L 2 ( 0 , 1 ) au 2 a ( 0 , 1 ) = x dx < ∞ & u ( 0 ) = 0 = u ( 1 ) οΏ½ 0 ∈ L 1 ( 0 , 1 ) strongly degenerate case: 1 / a / οΏ½ 1 οΏ½ οΏ½ οΏ½ H 1 u ∈ L 2 ( 0 , 1 ) au 2 a ( 0 , 1 ) = x dx < ∞ & u ( 1 ) = 0 οΏ½ 0 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 8 / 46

  4. existence, uniqueness, regularity well-posedness οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ au x ∈ H 1 ( 0 , 1 ) u ∈ H 1 D ( A ) = a ( 0 , 1 ) οΏ½ οΏ½ A u = au x x generates analytic semigroup in L 2 ( 0 , 1 ) u ∈ C ( 0 , T ; L 2 ( 0 , 1 )) ∩ L 2 ( 0 , T ; H 1 unique solution a ( 0 , 1 )) οΏ½ οΏ½ οΏ½ u t βˆ’ a ( x ) u x x = f in Q T =] 0 , 1 [ Γ— ] 0 , T [ u ( x , 0 ) = u 0 ( x ) maximal regularity u 0 ∈ H 1 u ∈ H 1 ( 0 , T ; L 2 ( 0 , 1 )) ∩ L 2 ( 0 , T ; D ( A )) a ( 0 , 1 ) = β‡’ (needed to justify integration by parts) strongly degenerate case incorporates b.c. ( x β†’ 0 ) u ∈ D ( A ) = β‡’ au x βˆ’ β†’ 0 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 9 / 46

  5. existence, uniqueness, regularity well-posedness οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ au x ∈ H 1 ( 0 , 1 ) u ∈ H 1 D ( A ) = a ( 0 , 1 ) οΏ½ οΏ½ A u = au x x generates analytic semigroup in L 2 ( 0 , 1 ) u ∈ C ( 0 , T ; L 2 ( 0 , 1 )) ∩ L 2 ( 0 , T ; H 1 unique solution a ( 0 , 1 )) οΏ½ οΏ½ οΏ½ u t βˆ’ a ( x ) u x x = f in Q T =] 0 , 1 [ Γ— ] 0 , T [ u ( x , 0 ) = u 0 ( x ) maximal regularity u 0 ∈ H 1 u ∈ H 1 ( 0 , T ; L 2 ( 0 , 1 )) ∩ L 2 ( 0 , T ; D ( A )) a ( 0 , 1 ) = β‡’ (needed to justify integration by parts) strongly degenerate case incorporates b.c. ( x β†’ 0 ) u ∈ D ( A ) = β‡’ au x βˆ’ β†’ 0 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 9 / 46

  6. existence, uniqueness, regularity well-posedness οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ au x ∈ H 1 ( 0 , 1 ) u ∈ H 1 D ( A ) = a ( 0 , 1 ) οΏ½ οΏ½ A u = au x x generates analytic semigroup in L 2 ( 0 , 1 ) u ∈ C ( 0 , T ; L 2 ( 0 , 1 )) ∩ L 2 ( 0 , T ; H 1 unique solution a ( 0 , 1 )) οΏ½ οΏ½ οΏ½ u t βˆ’ a ( x ) u x x = f in Q T =] 0 , 1 [ Γ— ] 0 , T [ u ( x , 0 ) = u 0 ( x ) maximal regularity u 0 ∈ H 1 u ∈ H 1 ( 0 , T ; L 2 ( 0 , 1 )) ∩ L 2 ( 0 , T ; D ( A )) a ( 0 , 1 ) = β‡’ (needed to justify integration by parts) strongly degenerate case incorporates b.c. ( x β†’ 0 ) u ∈ D ( A ) = β‡’ au x βˆ’ β†’ 0 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 9 / 46

  7. existence, uniqueness, regularity well-posedness οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ au x ∈ H 1 ( 0 , 1 ) u ∈ H 1 D ( A ) = a ( 0 , 1 ) οΏ½ οΏ½ A u = au x x generates analytic semigroup in L 2 ( 0 , 1 ) u ∈ C ( 0 , T ; L 2 ( 0 , 1 )) ∩ L 2 ( 0 , T ; H 1 unique solution a ( 0 , 1 )) οΏ½ οΏ½ οΏ½ u t βˆ’ a ( x ) u x x = f in Q T =] 0 , 1 [ Γ— ] 0 , T [ u ( x , 0 ) = u 0 ( x ) maximal regularity u 0 ∈ H 1 u ∈ H 1 ( 0 , T ; L 2 ( 0 , 1 )) ∩ L 2 ( 0 , T ; D ( A )) a ( 0 , 1 ) = β‡’ (needed to justify integration by parts) strongly degenerate case incorporates b.c. ( x β†’ 0 ) u ∈ D ( A ) = β‡’ au x βˆ’ β†’ 0 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 9 / 46

  8. existence, uniqueness, regularity well-posedness οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ au x ∈ H 1 ( 0 , 1 ) u ∈ H 1 D ( A ) = a ( 0 , 1 ) οΏ½ οΏ½ A u = au x x generates analytic semigroup in L 2 ( 0 , 1 ) u ∈ C ( 0 , T ; L 2 ( 0 , 1 )) ∩ L 2 ( 0 , T ; H 1 unique solution a ( 0 , 1 )) οΏ½ οΏ½ οΏ½ u t βˆ’ a ( x ) u x x = f in Q T =] 0 , 1 [ Γ— ] 0 , T [ u ( x , 0 ) = u 0 ( x ) maximal regularity u 0 ∈ H 1 u ∈ H 1 ( 0 , T ; L 2 ( 0 , 1 )) ∩ L 2 ( 0 , T ; D ( A )) a ( 0 , 1 ) = β‡’ (needed to justify integration by parts) strongly degenerate case incorporates b.c. ( x β†’ 0 ) u ∈ D ( A ) = β‡’ au x βˆ’ β†’ 0 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 9 / 46

  9. existence, uniqueness, regularity Budyko-Sellers model οΏ½ οΏ½ οΏ½ ( 1 βˆ’ x 2 ) u x u t βˆ’ x = f ( x ) g ( u ) βˆ’ h ( u ) x ∈ ( βˆ’ 1 , 1 ) ( 1 βˆ’ x 2 ) u x | x = Β± 1 = 0 ✬✩ r x = sin Ξ± οΏ½ οΏ½ Ξ± ✫βœͺ u ( t , x ) = sea-level zonally averaged temperature f ( x ) = solar input g ( u ) = co-albedo h ( u ) = outgoing infrared radiation P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 10 / 46

  10. existence, uniqueness, regularity Budyko-Sellers model οΏ½ οΏ½ οΏ½ ( 1 βˆ’ x 2 ) u x u t βˆ’ x = f ( x ) g ( u ) βˆ’ h ( u ) x ∈ ( βˆ’ 1 , 1 ) ( 1 βˆ’ x 2 ) u x | x = Β± 1 = 0 ✬✩ r x = sin Ξ± οΏ½ οΏ½ Ξ± ✫βœͺ u ( t , x ) = sea-level zonally averaged temperature f ( x ) = solar input g ( u ) = co-albedo h ( u ) = outgoing infrared radiation P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 10 / 46

  11. existence, uniqueness, regularity the simplest problem in 2d similar theory ο£± u t βˆ’ div ( A ( x ) βˆ‡ u ) = Ο‡ Ο‰ ( x ) f ( t , x ) in Q T  ο£² n = 2 u ( x , 0 ) = u 0 ( x ) x ∈ Ω  ο£³ + b. c. on Ξ“ Οƒ ( A ( x )) = { Ξ» 1 ( x ) , Ξ» 2 ( x ) } eigenvectors Ξ΅ 1 ( x ) , Ξ΅ 2 ( x ) οΏ½ Ξ» 1 ( x ) ∼ d Ξ“ ( x ) Ξ± , Ξ΅ 1 ( x ) ∼ βˆ’ Dd Ξ“ ( x ) = Ξ½ Ξ“ (Ξ  Ξ“ ( x )) near Ξ“ ✬ ✩ Ξ» 2 ( x ) β‰₯ m > 0 βˆ€ x ∈ Ω Ω Ξ΅ 2 ( x ) Ξ“ q ❅ β–  q ✫ ❅ βœͺ x οΏ½ Ξ΅ 1 ( x ) ✠ οΏ½ Ξ  Ξ“ ( x ) C–, Rocchetti & Vancostenoble (2008) P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 11 / 46

  12. boundary degeneracy overview Outline Examples of degenerate parabolic equations 1 Existence, uniqueness, and regularity 2 Null controllability for boundary degeneracy 3 Overview of null controllability Null controllability in one space dimension Null controllability in higher space dimension Application to inverse problems Controllability for Grushin-type operators 4 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 12 / 46

  13. boundary degeneracy overview controlled parabolic equations Ο‰ βŠ‚βŠ‚ Ω T > 0 ο£± u t βˆ’ div ( A ( x ) βˆ‡ u ) = Ο‡ Ο‰ ( x ) f ( t , x ) in Q T := Ω Γ— ] 0 , T [  ο£² u f β†’ u ( x , 0 ) = u 0 ( x ) x ∈ Ω  ο£³ + b. c. f control Ο‡ Ο‰ characteristic function of Ο‰ οΏ½ οΏ½ n A ( x ) = a ij ( x ) i , j = 1 a ij = a ji ∈ C (Ω) ∩ C 1 (Ω) ✬ ✩ positive definite in Ω (not in Ω ) βœ“βœ βœ’βœ‘ Ο‰ Ω ✫ βœͺ also of interest boundary control Ξ“ 1 βŠ‚ Ξ“ u ( t , x ) = g ( t , x ) ( t , x ) ∈ ( 0 , T ) Γ— Ξ“ 1 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 13 / 46

  14. boundary degeneracy overview controlled parabolic equations Ο‰ βŠ‚βŠ‚ Ω T > 0 ο£± u t βˆ’ div ( A ( x ) βˆ‡ u ) = Ο‡ Ο‰ ( x ) f ( t , x ) in Q T := Ω Γ— ] 0 , T [  ο£² u f β†’ u ( x , 0 ) = u 0 ( x ) x ∈ Ω  ο£³ + b. c. f control Ο‡ Ο‰ characteristic function of Ο‰ οΏ½ οΏ½ n A ( x ) = a ij ( x ) i , j = 1 a ij = a ji ∈ C (Ω) ∩ C 1 (Ω) ✬ ✩ positive definite in Ω (not in Ω ) βœ“βœ βœ’βœ‘ Ο‰ Ω ✫ βœͺ also of interest boundary control Ξ“ 1 βŠ‚ Ξ“ u ( t , x ) = g ( t , x ) ( t , x ) ∈ ( 0 , T ) Γ— Ξ“ 1 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 13 / 46

  15. boundary degeneracy overview controlled parabolic equations Ο‰ βŠ‚βŠ‚ Ω T > 0 ο£± u t βˆ’ div ( A ( x ) βˆ‡ u ) = Ο‡ Ο‰ ( x ) f ( t , x ) in Q T := Ω Γ— ] 0 , T [  ο£² u f β†’ u ( x , 0 ) = u 0 ( x ) x ∈ Ω  ο£³ + b. c. f control Ο‡ Ο‰ characteristic function of Ο‰ οΏ½ οΏ½ n A ( x ) = a ij ( x ) i , j = 1 a ij = a ji ∈ C (Ω) ∩ C 1 (Ω) ✬ ✩ positive definite in Ω (not in Ω ) βœ“βœ βœ’βœ‘ Ο‰ Ω ✫ βœͺ also of interest boundary control Ξ“ 1 βŠ‚ Ξ“ u ( t , x ) = g ( t , x ) ( t , x ) ∈ ( 0 , T ) Γ— Ξ“ 1 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 13 / 46

  16. boundary degeneracy overview the null controllability problem want to study null-controllability in time T > 0 ο£± u f ( Β· , T ) ≑ 0 ο£² βˆ€ u 0 ∈ L 2 (Ω) βˆƒ f ∈ L 2 ( Q T ) : οΏ½ Q T | f | 2 ≀ C T οΏ½ Ω | u 0 | 2 ο£³ uniformly parabolic equations: βˆƒ m > 0 : A ( x ) β‰₯ m I n = β‡’ null-controllability βˆ€ T > 0 Fattorini and Russell (1971), Russell (1978) Lebeau and Robbiano (1995) Fursikov and Emanouilov (1996) Tataru (1997) P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 14 / 46

  17. boundary degeneracy overview the null controllability problem want to study null-controllability in time T > 0 ο£± u f ( Β· , T ) ≑ 0 ο£² βˆ€ u 0 ∈ L 2 (Ω) βˆƒ f ∈ L 2 ( Q T ) : οΏ½ Q T | f | 2 ≀ C T οΏ½ Ω | u 0 | 2 ο£³ uniformly parabolic equations: βˆƒ m > 0 : A ( x ) β‰₯ m I n = β‡’ null-controllability βˆ€ T > 0 Fattorini and Russell (1971), Russell (1978) Lebeau and Robbiano (1995) Fursikov and Emanouilov (1996) Tataru (1997) P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 14 / 46

  18. boundary degeneracy overview the null controllability problem want to study null-controllability in time T > 0 ο£± u f ( Β· , T ) ≑ 0 ο£² βˆ€ u 0 ∈ L 2 (Ω) βˆƒ f ∈ L 2 ( Q T ) : οΏ½ Q T | f | 2 ≀ C T οΏ½ Ω | u 0 | 2 ο£³ uniformly parabolic equations: βˆƒ m > 0 : A ( x ) β‰₯ m I n = β‡’ null-controllability βˆ€ T > 0 Fattorini and Russell (1971), Russell (1978) Lebeau and Robbiano (1995) Fursikov and Emanouilov (1996) Tataru (1997) P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 14 / 46

  19. boundary degeneracy overview the roadmap to null controllability show equivalence with observability inequality οΏ½ adjoint v t + div ( A ( x ) βˆ‡ v ) = 0 in Q T problem v = 0 on Ξ“ Γ— ] 0 , T [ οΏ½ T οΏ½ οΏ½ v 2 ( x , 0 ) dx ≀ C T v 2 ( x , t ) dxdt = β‡’ Ω 0 Ο‰ prove observability by Carleman estimates Ο„ >> 1 οΏ½ T οΏ½οΏ½ οΏ½ e 2 s Ο† ( x , t ) dxdt ≀ C v 2 dxdt Ο„ 3 ΞΈ 3 ( t ) v 2 οΏ½ οΏ½οΏ½ οΏ½ Q T 0 Ο‰ + τθ ( t ) | Dv | 2 + Β·Β·Β· οΏ½ e r ψ ( x ) βˆ’ e 2 r οΏ½ ψ οΏ½ ∞ οΏ½ Ο† ( x , t ) = ΞΈ ( t ) any D ψ ( x ) οΏ½ = 0 in Ω \ Ο‰ P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 15 / 46

  20. boundary degeneracy overview the roadmap to null controllability show equivalence with observability inequality οΏ½ adjoint v t + div ( A ( x ) βˆ‡ v ) = 0 in Q T problem v = 0 on Ξ“ Γ— ] 0 , T [ οΏ½ T οΏ½ οΏ½ v 2 ( x , 0 ) dx ≀ C T v 2 ( x , t ) dxdt = β‡’ Ω 0 Ο‰ prove observability by Carleman estimates Ο„ >> 1 οΏ½ T οΏ½οΏ½ οΏ½ e 2 s Ο† ( x , t ) dxdt ≀ C v 2 dxdt Ο„ 3 ΞΈ 3 ( t ) v 2 οΏ½ οΏ½οΏ½ οΏ½ Q T 0 Ο‰ + τθ ( t ) | Dv | 2 + Β·Β·Β· οΏ½ e r ψ ( x ) βˆ’ e 2 r οΏ½ ψ οΏ½ ∞ οΏ½ Ο† ( x , t ) = ΞΈ ( t ) any D ψ ( x ) οΏ½ = 0 in Ω \ Ο‰ P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 15 / 46

  21. boundary degeneracy overview the roadmap to null controllability show equivalence with observability inequality οΏ½ adjoint v t + div ( A ( x ) βˆ‡ v ) = 0 in Q T problem v = 0 on Ξ“ Γ— ] 0 , T [ οΏ½ T οΏ½ οΏ½ v 2 ( x , 0 ) dx ≀ C T v 2 ( x , t ) dxdt = β‡’ Ω 0 Ο‰ prove observability by Carleman estimates Ο„ >> 1 οΏ½ T οΏ½οΏ½ οΏ½ e 2 s Ο† ( x , t ) dxdt ≀ C v 2 dxdt Ο„ 3 ΞΈ 3 ( t ) v 2 οΏ½ οΏ½οΏ½ οΏ½ Q T 0 Ο‰ + τθ ( t ) | Dv | 2 + Β·Β·Β· οΏ½ e r ψ ( x ) βˆ’ e 2 r οΏ½ ψ οΏ½ ∞ οΏ½ Ο† ( x , t ) = ΞΈ ( t ) any D ψ ( x ) οΏ½ = 0 in Ω \ Ο‰ P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 15 / 46

  22. boundary degeneracy overview difficulties in degenerate case observability ( β‡’ null controllability) may fail (for violent degeneracies) Ο† in Carleman must be adapted to degeneracy Hardy’s inequality essential οΏ½ οΏ½ w 2 dx ≀ C Ξ± Ξ“ |βˆ‡ w | 2 dx d Ξ± βˆ’ 2 d Ξ± ( Ξ± οΏ½ = 1 ) Ξ“ Ω Ω P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 16 / 46

  23. boundary degeneracy overview difficulties in degenerate case observability ( β‡’ null controllability) may fail (for violent degeneracies) Ο† in Carleman must be adapted to degeneracy Hardy’s inequality essential οΏ½ οΏ½ w 2 dx ≀ C Ξ± Ξ“ |βˆ‡ w | 2 dx d Ξ± βˆ’ 2 d Ξ± ( Ξ± οΏ½ = 1 ) Ξ“ Ω Ω P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 16 / 46

  24. boundary degeneracy overview difficulties in degenerate case observability ( β‡’ null controllability) may fail (for violent degeneracies) Ο† in Carleman must be adapted to degeneracy Hardy’s inequality essential οΏ½ οΏ½ w 2 dx ≀ C Ξ± Ξ“ |βˆ‡ w | 2 dx d Ξ± βˆ’ 2 d Ξ± ( Ξ± οΏ½ = 1 ) Ξ“ Ω Ω P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 16 / 46

  25. boundary degeneracy overview difficulties in degenerate case observability ( β‡’ null controllability) may fail (for violent degeneracies) Ο† in Carleman must be adapted to degeneracy Hardy’s inequality essential οΏ½ οΏ½ w 2 dx ≀ C Ξ± Ξ“ |βˆ‡ w | 2 dx d Ξ± βˆ’ 2 d Ξ± ( Ξ± οΏ½ = 1 ) Ξ“ Ω Ω P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 16 / 46

  26. boundary degeneracy one space dimension Outline Examples of degenerate parabolic equations 1 Existence, uniqueness, and regularity 2 Null controllability for boundary degeneracy 3 Overview of null controllability Null controllability in one space dimension Null controllability in higher space dimension Application to inverse problems Controllability for Grushin-type operators 4 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 17 / 46

  27. boundary degeneracy one space dimension the simplest example of degeneracy a ( x ) = x Ξ± Ο‰ =] a , b [ βŠ‚βŠ‚ ( 0 , 1 ) ( Ξ± > 0 ) οΏ½ οΏ½ x Ξ± u x u t βˆ’ x = Ο‡ Ο‰ f , u ( 0 , x ) = u 0 ( x ) Theorem (C – Martinez – Vancostenoble, 2008) ο£± false Ξ± β‰₯ 2 ( β†’ regional null controllability )  ο£² οΏ½ n. c. any b.c. 0 ≀ Ξ± < 1 weak true 0 ≀ Ξ± < 2  ο£³ Neumann b.c. 1 ≀ Ξ± < 2 strong r r r r regional T r r r 0 1 Ο‰ P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 18 / 46

  28. boundary degeneracy one space dimension the simplest example of degeneracy a ( x ) = x Ξ± Ο‰ =] a , b [ βŠ‚βŠ‚ ( 0 , 1 ) ( Ξ± > 0 ) οΏ½ οΏ½ x Ξ± u x u t βˆ’ x = Ο‡ Ο‰ f , u ( 0 , x ) = u 0 ( x ) Theorem (C – Martinez – Vancostenoble, 2008) ο£± false Ξ± β‰₯ 2 ( β†’ regional null controllability )  ο£² οΏ½ n. c. any b.c. 0 ≀ Ξ± < 1 weak true 0 ≀ Ξ± < 2  ο£³ Neumann b.c. 1 ≀ Ξ± < 2 strong r r r r regional T r r r 0 1 Ο‰ P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 18 / 46

  29. boundary degeneracy one space dimension Carleman estimate 0 < Ξ± < 2 οΏ½ οΏ½ x Ξ± w x w t + x = f in ( 0 , 1 ) Γ— ( 0 , T ) + b. c. let Ο• ( t , x ) = ΞΈ ( t ) ψ ( x ) where οΏ½ οΏ½ 4 ψ ( x ) = x 2 βˆ’ Ξ± βˆ’ 2 1 ΞΈ ( t ) = t ( T βˆ’ t ) ( 2 βˆ’ Ξ± ) 2 Theorem (C – Martinez – Vancostenoble, 2008) There exists Ο„ 0 , C > 0 such that βˆ€ Ο„ β‰₯ Ο„ 0 οΏ½οΏ½ οΏ½ w 2 x + Ο„ 3 ΞΈ 3 x 2 βˆ’ Ξ± w 2 οΏ½ e 2 τϕ dxdt τθ + τθ x Ξ± w 2 t Q T οΏ½ T οΏ½οΏ½ οΏ½ | f | 2 e 2 τϕ dxdt + C w 2 ( x , t ) dxdt ≀ C Q T 0 Ο‰ P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 19 / 46

  30. boundary degeneracy one space dimension Carleman estimate 0 < Ξ± < 2 οΏ½ οΏ½ x Ξ± w x w t + x = f in ( 0 , 1 ) Γ— ( 0 , T ) + b. c. let Ο• ( t , x ) = ΞΈ ( t ) ψ ( x ) where οΏ½ οΏ½ 4 ψ ( x ) = x 2 βˆ’ Ξ± βˆ’ 2 1 ΞΈ ( t ) = t ( T βˆ’ t ) ( 2 βˆ’ Ξ± ) 2 Theorem (C – Martinez – Vancostenoble, 2008) There exists Ο„ 0 , C > 0 such that βˆ€ Ο„ β‰₯ Ο„ 0 οΏ½οΏ½ οΏ½ w 2 x + Ο„ 3 ΞΈ 3 x 2 βˆ’ Ξ± w 2 οΏ½ e 2 τϕ dxdt τθ + τθ x Ξ± w 2 t Q T οΏ½ T οΏ½οΏ½ οΏ½ | f | 2 e 2 τϕ dxdt + C w 2 ( x , t ) dxdt ≀ C Q T 0 Ο‰ P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 19 / 46

  31. boundary degeneracy one space dimension Carleman estimate 0 < Ξ± < 2 οΏ½ οΏ½ x Ξ± w x w t + x = f in ( 0 , 1 ) Γ— ( 0 , T ) + b. c. let Ο• ( t , x ) = ΞΈ ( t ) ψ ( x ) where οΏ½ οΏ½ 4 ψ ( x ) = x 2 βˆ’ Ξ± βˆ’ 2 1 ΞΈ ( t ) = t ( T βˆ’ t ) ( 2 βˆ’ Ξ± ) 2 Theorem (C – Martinez – Vancostenoble, 2008) There exists Ο„ 0 , C > 0 such that βˆ€ Ο„ β‰₯ Ο„ 0 οΏ½οΏ½ οΏ½ w 2 x + Ο„ 3 ΞΈ 3 x 2 βˆ’ Ξ± w 2 οΏ½ e 2 τϕ dxdt τθ + τθ x Ξ± w 2 t Q T οΏ½ T οΏ½οΏ½ οΏ½ | f | 2 e 2 τϕ dxdt + C w 2 ( x , t ) dxdt ≀ C Q T 0 Ο‰ P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 19 / 46

  32. boundary degeneracy one space dimension more general 1-d problems divergence form οΏ½ οΏ½ u t βˆ’ a ( x ) u x x = Ο‡ Ο‰ f Martinez – Vancostenoble (2006) οΏ½ οΏ½ Alabau – C – Fragnelli (2006) u t βˆ’ a ( x ) u x x + g ( u ) = Ο‡ Ο‰ f οΏ½ x ΞΈ u x οΏ½ x + x Οƒ b ( x , t ) u x = Ο‡ Ο‰ f Flores – de Teresa (2010) u t βˆ’ non-divergence form C – Fragnelli – Rocchetti (2007, 2008) u t βˆ’ a ( x ) u xx βˆ’ b ( x ) u x = Ο‡ Ο‰ f degenerate/singular problems Vancostenoble – Zuazua (2008), Vancostenoble (2009) Ξ» x ΞΈ u x οΏ½ οΏ½ u t βˆ’ x βˆ’ x Οƒ u = Ο‡ Ο‰ f systems C – de Teresa (2009) cascade 2 Γ— 2 Maniar et al. (2011) general 2 Γ— 2 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 20 / 46

  33. boundary degeneracy one space dimension more general 1-d problems divergence form οΏ½ οΏ½ u t βˆ’ a ( x ) u x x = Ο‡ Ο‰ f Martinez – Vancostenoble (2006) οΏ½ οΏ½ Alabau – C – Fragnelli (2006) u t βˆ’ a ( x ) u x x + g ( u ) = Ο‡ Ο‰ f οΏ½ x ΞΈ u x οΏ½ x + x Οƒ b ( x , t ) u x = Ο‡ Ο‰ f Flores – de Teresa (2010) u t βˆ’ non-divergence form C – Fragnelli – Rocchetti (2007, 2008) u t βˆ’ a ( x ) u xx βˆ’ b ( x ) u x = Ο‡ Ο‰ f degenerate/singular problems Vancostenoble – Zuazua (2008), Vancostenoble (2009) Ξ» x ΞΈ u x οΏ½ οΏ½ u t βˆ’ x βˆ’ x Οƒ u = Ο‡ Ο‰ f systems C – de Teresa (2009) cascade 2 Γ— 2 Maniar et al. (2011) general 2 Γ— 2 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 20 / 46

  34. boundary degeneracy higher space dimension Outline Examples of degenerate parabolic equations 1 Existence, uniqueness, and regularity 2 Null controllability for boundary degeneracy 3 Overview of null controllability Null controllability in one space dimension Null controllability in higher space dimension Application to inverse problems Controllability for Grushin-type operators 4 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 21 / 46

  35. boundary degeneracy higher space dimension extension to n β‰₯ 2 ο£± u t βˆ’ div ( A ( x ) βˆ‡ u ) = Ο‡ Ο‰ ( x ) f ( t , x ) in Q T  ο£² n = 2 u ( x , 0 ) = u 0 ( x ) x ∈ Ω  ο£³ + b. c. on Ξ“ Οƒ ( A ( x )) = { Ξ» 1 ( x ) , Ξ» 2 ( x ) } eigenvectors Ξ΅ 1 ( x ) , Ξ΅ 2 ( x ) οΏ½ Ξ» 1 ( x ) ∼ d Ξ“ ( x ) Ξ± , Ξ΅ 1 ( x ) ∼ βˆ’ Dd Ξ“ ( x ) = Ξ½ Ξ“ (Ξ  Ξ“ ( x )) near Ξ“ Ξ» 2 ( x ) β‰₯ m > 0 βˆ€ x ∈ Ω ✬ ✩ Ω Ξ΅ 2 ( x ) Ξ“ q ❅ β–  q ✫ ❅ βœͺ x οΏ½ Ξ΅ 1 ( x ) ✠ οΏ½ Ξ  Ξ“ ( x ) P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 22 / 46

  36. boundary degeneracy higher space dimension extension to n β‰₯ 2 ο£± u t βˆ’ div ( A ( x ) βˆ‡ u ) = Ο‡ Ο‰ ( x ) f ( t , x ) in Q T  ο£² n = 2 u ( x , 0 ) = u 0 ( x ) x ∈ Ω  ο£³ + b. c. on Ξ“ Οƒ ( A ( x )) = { Ξ» 1 ( x ) , Ξ» 2 ( x ) } eigenvectors Ξ΅ 1 ( x ) , Ξ΅ 2 ( x ) οΏ½ Ξ» 1 ( x ) ∼ d Ξ“ ( x ) Ξ± , Ξ΅ 1 ( x ) ∼ βˆ’ Dd Ξ“ ( x ) = Ξ½ Ξ“ (Ξ  Ξ“ ( x )) near Ξ“ Ξ» 2 ( x ) β‰₯ m > 0 βˆ€ x ∈ Ω ✬ ✩ Ω Ξ΅ 2 ( x ) Ξ“ q ❅ β–  q ✫ ❅ βœͺ x οΏ½ Ξ΅ 1 ( x ) ✠ οΏ½ Ξ  Ξ“ ( x ) P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 22 / 46

  37. boundary degeneracy higher space dimension extension to n β‰₯ 2 ο£± u t βˆ’ div ( A ( x ) βˆ‡ u ) = Ο‡ Ο‰ ( x ) f ( t , x ) in Q T  ο£² n = 2 u ( x , 0 ) = u 0 ( x ) x ∈ Ω  ο£³ + b. c. on Ξ“ Οƒ ( A ( x )) = { Ξ» 1 ( x ) , Ξ» 2 ( x ) } eigenvectors Ξ΅ 1 ( x ) , Ξ΅ 2 ( x ) οΏ½ Ξ» 1 ( x ) ∼ d Ξ“ ( x ) Ξ± , Ξ΅ 1 ( x ) ∼ βˆ’ Dd Ξ“ ( x ) = Ξ½ Ξ“ (Ξ  Ξ“ ( x )) near Ξ“ Ξ» 2 ( x ) β‰₯ m > 0 βˆ€ x ∈ Ω ✬ ✩ Ω Ξ΅ 2 ( x ) Ξ“ q ❅ β–  q ✫ ❅ βœͺ x οΏ½ Ξ΅ 1 ( x ) ✠ οΏ½ Ξ  Ξ“ ( x ) P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 22 / 46

  38. boundary degeneracy higher space dimension null controllability ( n = 2 ) ο£± u t βˆ’ div ( A ( x ) βˆ‡ u ) = Ο‡ Ο‰ ( x ) f ( t , x ) in Q T Οƒ ( A ( x )) = { Ξ» 1 ( x ) , Ξ» 2 ( x ) }  ο£² u ( x , 0 ) = u 0 ( x ) x ∈ Ω Ξ» 1 ( x ) ∼ d Ξ“ ( x ) Ξ±  ο£³ + b. c. on Ξ“ Theorem (C, Martinez, Vancostenoble – CRAS 2009) 0 ≀ Ξ± < 2 null controllability holds Ξ± β‰₯ 2 null-controllability fails the proof uses topological lemma to construct adapted weight Carleman’s estimate to provide observability inequality Hardy’s inequality to control degenerate terms P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 23 / 46

  39. boundary degeneracy higher space dimension null controllability ( n = 2 ) ο£± u t βˆ’ div ( A ( x ) βˆ‡ u ) = Ο‡ Ο‰ ( x ) f ( t , x ) in Q T Οƒ ( A ( x )) = { Ξ» 1 ( x ) , Ξ» 2 ( x ) }  ο£² u ( x , 0 ) = u 0 ( x ) x ∈ Ω Ξ» 1 ( x ) ∼ d Ξ“ ( x ) Ξ±  ο£³ + b. c. on Ξ“ Theorem (C, Martinez, Vancostenoble – CRAS 2009) 0 ≀ Ξ± < 2 null controllability holds Ξ± β‰₯ 2 null-controllability fails the proof uses topological lemma to construct adapted weight Carleman’s estimate to provide observability inequality Hardy’s inequality to control degenerate terms P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 23 / 46

  40. boundary degeneracy inverse problems Outline Examples of degenerate parabolic equations 1 Existence, uniqueness, and regularity 2 Null controllability for boundary degeneracy 3 Overview of null controllability Null controllability in one space dimension Null controllability in higher space dimension Application to inverse problems Controllability for Grushin-type operators 4 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 24 / 46

  41. boundary degeneracy inverse problems inverse problems in 1 d 0 ≀ Ξ± < 2 ο£± u t βˆ’ ( x Ξ± u x ) x = g Q T = ( 0 , T ) Γ— ( 0 , 1 )    u ( t , 1 ) = 0 t ∈ ( 0 , T )  οΏ½ u ( t , 0 ) = 0 ο£² for 0 ≀ Ξ± < 1 t ∈ ( 0 , T )  ( x Ξ± u x ) | x = 0 = 0 for 1 ≀ Ξ± < 2    ο£³ u ( 0 , x ) = u 0 ( x ) x ∈ ( 0 , 1 ) want to β€˜determine’ g by measurements of u stability estimates uniqueness results T u x ( Β· , 1 ) u ( T β€² , Β· ) g ← βˆ’ 0 1 Figure: β€˜boundary measurements’ P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 25 / 46

  42. boundary degeneracy inverse problems inverse problems in 1 d 0 ≀ Ξ± < 2 ο£± u t βˆ’ ( x Ξ± u x ) x = g Q T = ( 0 , T ) Γ— ( 0 , 1 )    u ( t , 1 ) = 0 t ∈ ( 0 , T )  οΏ½ u ( t , 0 ) = 0 ο£² for 0 ≀ Ξ± < 1 t ∈ ( 0 , T )  ( x Ξ± u x ) | x = 0 = 0 for 1 ≀ Ξ± < 2    ο£³ u ( 0 , x ) = u 0 ( x ) x ∈ ( 0 , 1 ) want to β€˜determine’ g by measurements of u stability estimates uniqueness results T u x ( Β· , 1 ) u ( T β€² , Β· ) g ← βˆ’ 0 1 Figure: β€˜boundary measurements’ P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 25 / 46

  43. boundary degeneracy inverse problems references uniformly parabolic case ( Ξ± = 0 ) Bukhgeim & Klibanov (1981), Klibanov (1992), Isakov (1998), Klibanov & Timonov (2004) (HΒ¨ older stability by local Carleman estimates) Emanouilov & Yamamoto (1998, 2001) (Lipschitz stability by global Carleman estimates) degenerate case Ξ± ∈ [ 0 , 2 ) C– Tort & Yamamoto (2010) (Lipschitz stability n = 1) C– Martinez & Vancostenoble (Lipschitz stability n = 2) P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 26 / 46

  44. boundary degeneracy inverse problems references uniformly parabolic case ( Ξ± = 0 ) Bukhgeim & Klibanov (1981), Klibanov (1992), Isakov (1998), Klibanov & Timonov (2004) (HΒ¨ older stability by local Carleman estimates) Emanouilov & Yamamoto (1998, 2001) (Lipschitz stability by global Carleman estimates) degenerate case Ξ± ∈ [ 0 , 2 ) C– Tort & Yamamoto (2010) (Lipschitz stability n = 1) C– Martinez & Vancostenoble (Lipschitz stability n = 2) P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 26 / 46

  45. boundary degeneracy inverse problems references uniformly parabolic case ( Ξ± = 0 ) Bukhgeim & Klibanov (1981), Klibanov (1992), Isakov (1998), Klibanov & Timonov (2004) (HΒ¨ older stability by local Carleman estimates) Emanouilov & Yamamoto (1998, 2001) (Lipschitz stability by global Carleman estimates) degenerate case Ξ± ∈ [ 0 , 2 ) C– Tort & Yamamoto (2010) (Lipschitz stability n = 1) C– Martinez & Vancostenoble (Lipschitz stability n = 2) P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 26 / 46

  46. boundary degeneracy inverse problems Lipschitz stability: boundary measurements ο£± u t βˆ’ ( x Ξ± u x ) x = g ( t , x ) Q T = ( 0 , T ) Γ— ( 0 , 1 )    u ( t , 1 ) = 0 t ∈ ( 0 , T )  ο£² οΏ½ u ( t , 0 ) = 0 for 0 ≀ Ξ± < 1 t ∈ ( 0 , T )  ( x Ξ± u x ) | x = 0 = 0 for 1 ≀ Ξ± < 2    ο£³ u ( 0 , x ) = u 0 ( x ) x ∈ ( 0 , 1 ) Theorem 0 ≀ Ξ± < 2 there exists t 0 ∈ ( 0 , T ) and k β‰₯ 0 such that οΏ½ οΏ½ βˆ‚ g T β€² = T + t 0 οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ g ( T β€² , x ) βˆ‚ t ( t , x ) οΏ½ ≀ k where οΏ½ οΏ½ οΏ½ 2 οΏ½ οΏ½ T οΏ½ 1 οΏ½ g οΏ½ 2 | u tx ( t , 1 ) | 2 dt + C | ( x Ξ± u x ( T β€² , x )) x | 2 dx = β‡’ L 2 ( QT ) ≀ C t 0 0 where C = C ( Ξ±, k , t 0 , T ) P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 27 / 46

  47. boundary degeneracy inverse problems Lipschitz stability: boundary measurements ο£± u t βˆ’ ( x Ξ± u x ) x = g ( t , x ) Q T = ( 0 , T ) Γ— ( 0 , 1 )    u ( t , 1 ) = 0 t ∈ ( 0 , T )  ο£² οΏ½ u ( t , 0 ) = 0 for 0 ≀ Ξ± < 1 t ∈ ( 0 , T )  ( x Ξ± u x ) | x = 0 = 0 for 1 ≀ Ξ± < 2    ο£³ u ( 0 , x ) = u 0 ( x ) x ∈ ( 0 , 1 ) Theorem 0 ≀ Ξ± < 2 there exists t 0 ∈ ( 0 , T ) and k β‰₯ 0 such that οΏ½ οΏ½ βˆ‚ g T β€² = T + t 0 οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ g ( T β€² , x ) βˆ‚ t ( t , x ) οΏ½ ≀ k where οΏ½ οΏ½ οΏ½ 2 οΏ½ οΏ½ T οΏ½ 1 οΏ½ g οΏ½ 2 | u tx ( t , 1 ) | 2 dt + C | ( x Ξ± u x ( T β€² , x )) x | 2 dx = β‡’ L 2 ( QT ) ≀ C t 0 0 where C = C ( Ξ±, k , t 0 , T ) P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 27 / 46

  48. boundary degeneracy inverse problems uniqueness: boundary measurements ο£± u t βˆ’ ( x Ξ± u x ) x = f ( x ) r ( t , x ) Q T = ( 0 , T ) Γ— ( 0 , 1 )    u ( t , 1 ) = 0 t ∈ ( 0 , T )  ο£² οΏ½ u ( t , 0 ) = 0 for 0 ≀ Ξ± < 1 ( IP ) t ∈ ( 0 , T )  ( x Ξ± u x ) | x = 0 = 0 for 1 ≀ Ξ± < 2    ο£³ u ( 0 , x ) = u 0 ( x ) x ∈ ( 0 , 1 ) r ∈ C 1 ([ 0 , T ] Γ— [ 0 , 1 ]) given such that at T β€² = T + t 0 we have 2 β€² , x ) β‰₯ d > 0 r ( T βˆ€ x ∈ [ 0 , 1 ] ( βˆ— ) f 1 , f 2 ∈ L 2 ( 0 , 1 ) u 1 , u 2 ∈ L 2 ( 0 , 1 ) solutions of ( IP ) οΏ½ T οΏ½ f 1 βˆ’ f 2 οΏ½ 2 | ( u 1 βˆ’ u 2 ) tx ( t , 1 ) | 2 dt = β‡’ L 2 ( 0 , 1 ) ≀ C t 0 οΏ½ 1 | ( x Ξ± ( u 1 ( T β€² , x ) βˆ’ u 2 ( T β€² , x )) x ) x | 2 dx + C 0 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 28 / 46

  49. boundary degeneracy inverse problems uniqueness: boundary measurements ο£± u t βˆ’ ( x Ξ± u x ) x = f ( x ) r ( t , x ) Q T = ( 0 , T ) Γ— ( 0 , 1 )    u ( t , 1 ) = 0 t ∈ ( 0 , T )  ο£² οΏ½ u ( t , 0 ) = 0 for 0 ≀ Ξ± < 1 ( IP ) t ∈ ( 0 , T )  ( x Ξ± u x ) | x = 0 = 0 for 1 ≀ Ξ± < 2    ο£³ u ( 0 , x ) = u 0 ( x ) x ∈ ( 0 , 1 ) r ∈ C 1 ([ 0 , T ] Γ— [ 0 , 1 ]) given such that at T β€² = T + t 0 we have 2 β€² , x ) β‰₯ d > 0 r ( T βˆ€ x ∈ [ 0 , 1 ] ( βˆ— ) f 1 , f 2 ∈ L 2 ( 0 , 1 ) u 1 , u 2 ∈ L 2 ( 0 , 1 ) solutions of ( IP ) οΏ½ T οΏ½ f 1 βˆ’ f 2 οΏ½ 2 | ( u 1 βˆ’ u 2 ) tx ( t , 1 ) | 2 dt = β‡’ L 2 ( 0 , 1 ) ≀ C t 0 οΏ½ 1 | ( x Ξ± ( u 1 ( T β€² , x ) βˆ’ u 2 ( T β€² , x )) x ) x | 2 dx + C 0 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 28 / 46

  50. boundary degeneracy inverse problems uniqueness: boundary measurements ο£± u t βˆ’ ( x Ξ± u x ) x = f ( x ) r ( t , x ) Q T = ( 0 , T ) Γ— ( 0 , 1 )    u ( t , 1 ) = 0 t ∈ ( 0 , T )  ο£² οΏ½ u ( t , 0 ) = 0 for 0 ≀ Ξ± < 1 ( IP ) t ∈ ( 0 , T )  ( x Ξ± u x ) | x = 0 = 0 for 1 ≀ Ξ± < 2    ο£³ u ( 0 , x ) = u 0 ( x ) x ∈ ( 0 , 1 ) r ∈ C 1 ([ 0 , T ] Γ— [ 0 , 1 ]) given such that at T β€² = T + t 0 we have 2 β€² , x ) β‰₯ d > 0 r ( T βˆ€ x ∈ [ 0 , 1 ] ( βˆ— ) f 1 , f 2 ∈ L 2 ( 0 , 1 ) u 1 , u 2 ∈ L 2 ( 0 , 1 ) solutions of ( IP ) οΏ½ T οΏ½ f 1 βˆ’ f 2 οΏ½ 2 | ( u 1 βˆ’ u 2 ) tx ( t , 1 ) | 2 dt = β‡’ L 2 ( 0 , 1 ) ≀ C t 0 οΏ½ 1 | ( x Ξ± ( u 1 ( T β€² , x ) βˆ’ u 2 ( T β€² , x )) x ) x | 2 dx + C 0 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 28 / 46

  51. boundary degeneracy inverse problems uniqueness: boundary measurements ο£± u t βˆ’ ( x Ξ± u x ) x = f ( x ) r ( t , x ) Q T = ( 0 , T ) Γ— ( 0 , 1 )    u ( t , 1 ) = 0 t ∈ ( 0 , T )  ο£² οΏ½ u ( t , 0 ) = 0 for 0 ≀ Ξ± < 1 ( IP ) t ∈ ( 0 , T )  ( x Ξ± u x ) | x = 0 = 0 for 1 ≀ Ξ± < 2    ο£³ u ( 0 , x ) = u 0 ( x ) x ∈ ( 0 , 1 ) r ∈ C 1 ([ 0 , T ] Γ— [ 0 , 1 ]) given such that at T β€² = T + t 0 we have 2 β€² , x ) β‰₯ d > 0 r ( T βˆ€ x ∈ [ 0 , 1 ] ( βˆ— ) f 1 , f 2 ∈ L 2 ( 0 , 1 ) u 1 , u 2 ∈ L 2 ( 0 , 1 ) solutions of ( IP ) οΏ½ T οΏ½ f 1 βˆ’ f 2 οΏ½ 2 | ( u 1 βˆ’ u 2 ) tx ( t , 1 ) | 2 dt = β‡’ L 2 ( 0 , 1 ) ≀ C t 0 οΏ½ 1 | ( x Ξ± ( u 1 ( T β€² , x ) βˆ’ u 2 ( T β€² , x )) x ) x | 2 dx + C 0 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 28 / 46

  52. boundary degeneracy inverse problems locally distributed measurements ο£± u t βˆ’ ( x Ξ± u x ) x = g Q T = ( 0 , T ) Γ— ( 0 , 1 )    u ( t , 1 ) = 0 t ∈ ( 0 , T )  ο£² οΏ½ u ( t , 0 ) = 0 for 0 ≀ Ξ± < 1 t ∈ ( 0 , T )  ( x Ξ± u x ) | x = 0 = 0 for 1 ≀ Ξ± < 2    ο£³ u ( 0 , x ) = u 0 ( x ) x ∈ ( 0 , 1 ) r r r r T u t u ( T β€² , Β· ) g ← βˆ’ r r r 0 1 Ο‰ stability estimates uniqueness results P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 29 / 46

  53. boundary degeneracy inverse problems locally distributed measurements ο£± u t βˆ’ ( x Ξ± u x ) x = g Q T = ( 0 , T ) Γ— ( 0 , 1 )    u ( t , 1 ) = 0 t ∈ ( 0 , T )  ο£² οΏ½ u ( t , 0 ) = 0 for 0 ≀ Ξ± < 1 t ∈ ( 0 , T )  ( x Ξ± u x ) | x = 0 = 0 for 1 ≀ Ξ± < 2    ο£³ u ( 0 , x ) = u 0 ( x ) x ∈ ( 0 , 1 ) r r r r T u t u ( T β€² , Β· ) g ← βˆ’ r r r 0 1 Ο‰ stability estimates uniqueness results P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 29 / 46

  54. boundary degeneracy inverse problems locally distributed measurements ο£± u t βˆ’ ( x Ξ± u x ) x = g Q T = ( 0 , T ) Γ— ( 0 , 1 )    u ( t , 1 ) = 0 t ∈ ( 0 , T )  ο£² οΏ½ u ( t , 0 ) = 0 for 0 ≀ Ξ± < 1 t ∈ ( 0 , T )  ( x Ξ± u x ) | x = 0 = 0 for 1 ≀ Ξ± < 2    ο£³ u ( 0 , x ) = u 0 ( x ) x ∈ ( 0 , 1 ) r r r r T u t u ( T β€² , Β· ) g ← βˆ’ r r r 0 1 Ο‰ stability estimates uniqueness results P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 29 / 46

  55. boundary degeneracy inverse problems locally distributed measurements ο£± u t βˆ’ ( x Ξ± u x ) x = g Q T = ( 0 , T ) Γ— ( 0 , 1 )    u ( t , 1 ) = 0 t ∈ ( 0 , T )  ο£² οΏ½ u ( t , 0 ) = 0 for 0 ≀ Ξ± < 1 t ∈ ( 0 , T )  ( x Ξ± u x ) | x = 0 = 0 for 1 ≀ Ξ± < 2    ο£³ u ( 0 , x ) = u 0 ( x ) x ∈ ( 0 , 1 ) r r r r T u t u ( T β€² , Β· ) g ← βˆ’ r r r 0 1 Ο‰ stability estimates uniqueness results P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 29 / 46

  56. control with interior degeneracy Grushin-type operators Ω := ( βˆ’ 1 , 1 ) Γ— ( 0 , 1 ) , Ο‰ βŠ‚ ( a , b ) Γ— ( 0 , 1 ) with 0 < a < b < 1 1 y β™₯ Ω Ο‰ 1 x a b βˆ’ 1 0 ο£± βˆ‚ t u βˆ’ βˆ‚ 2 x u βˆ’ | x | 2 Ξ³ βˆ‚ 2 y u = Ο‡ Ο‰ ( x , y ) f ( t , x , y )   ο£² Ξ³ > 0 u ( t , Β± 1 , y ) = 0 , u ( t , x , 0 ) = 0 = u ( t , x , 1 ) ( G )   ο£³ u ( 0 , x , y ) = u 0 ( x , y ) P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 30 / 46

  57. control with interior degeneracy Grushin-type operators Ω := ( βˆ’ 1 , 1 ) Γ— ( 0 , 1 ) , Ο‰ βŠ‚ ( a , b ) Γ— ( 0 , 1 ) with 0 < a < b < 1 1 y β™₯ Ω Ο‰ 1 x a b βˆ’ 1 0 ο£± βˆ‚ t u βˆ’ βˆ‚ 2 x u βˆ’ | x | 2 Ξ³ βˆ‚ 2 y u = Ο‡ Ο‰ ( x , y ) f ( t , x , y )   ο£² Ξ³ > 0 u ( t , Β± 1 , y ) = 0 , u ( t , x , 0 ) = 0 = u ( t , x , 1 ) ( G )   ο£³ u ( 0 , x , y ) = u 0 ( x , y ) P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 30 / 46

  58. control with interior degeneracy existence and uniqueness of solutions οΏ½ οΏ½ οΏ½ In H = L 2 (Ω) with scalar product ( f , g ) = f x g x + | x | 2 Ξ³ f y g y dxdy Ω V = C ∞ 0 (Ω) a ( f , g ) = βˆ’ ( f , g ) βˆ€ f , g ∈ V D ( A ) = { f ∈ V : βˆƒ c > 0 such that | a ( f , h ) | ≀ c οΏ½ h οΏ½ H βˆ€ h ∈ V } and οΏ½ Af , h οΏ½ = a ( f , h ) βˆ€ h ∈ V A : D ( A ) βŠ‚ H β†’ H generator of a semigroup e tA of contractions in H Theorem T > 0 , u 0 ∈ L 2 (Ω) , f ∈ L 2 (( 0 , T ) Γ— Ω) β‡’ βˆƒ ! u ∈ C ([ 0 , T ]; L 2 (Ω)) : βˆ€ t ∈ ( 0 , T ) , Ο† ∈ C 2 ([ 0 , T ] Γ— Ω) = οΏ½ t οΏ½ οΏ½ u ( βˆ‚ t Ο† + βˆ‚ 2 x Ο† + | x | 2 Ξ³ βˆ‚ 2 [ u ( t ) Ο† ( t ) βˆ’ u ( 0 ) Ο† ( 0 )] = y Ο† ) + Ο‡ Ο‰ f Ο† Ω 0 Ω P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 31 / 46

  59. control with interior degeneracy existence and uniqueness of solutions οΏ½ οΏ½ οΏ½ In H = L 2 (Ω) with scalar product ( f , g ) = f x g x + | x | 2 Ξ³ f y g y dxdy Ω V = C ∞ 0 (Ω) a ( f , g ) = βˆ’ ( f , g ) βˆ€ f , g ∈ V D ( A ) = { f ∈ V : βˆƒ c > 0 such that | a ( f , h ) | ≀ c οΏ½ h οΏ½ H βˆ€ h ∈ V } and οΏ½ Af , h οΏ½ = a ( f , h ) βˆ€ h ∈ V A : D ( A ) βŠ‚ H β†’ H generator of a semigroup e tA of contractions in H Theorem T > 0 , u 0 ∈ L 2 (Ω) , f ∈ L 2 (( 0 , T ) Γ— Ω) β‡’ βˆƒ ! u ∈ C ([ 0 , T ]; L 2 (Ω)) : βˆ€ t ∈ ( 0 , T ) , Ο† ∈ C 2 ([ 0 , T ] Γ— Ω) = οΏ½ t οΏ½ οΏ½ u ( βˆ‚ t Ο† + βˆ‚ 2 x Ο† + | x | 2 Ξ³ βˆ‚ 2 [ u ( t ) Ο† ( t ) βˆ’ u ( 0 ) Ο† ( 0 )] = y Ο† ) + Ο‡ Ο‰ f Ο† Ω 0 Ω P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 31 / 46

  60. control with interior degeneracy existence and uniqueness of solutions οΏ½ οΏ½ οΏ½ In H = L 2 (Ω) with scalar product ( f , g ) = f x g x + | x | 2 Ξ³ f y g y dxdy Ω V = C ∞ 0 (Ω) a ( f , g ) = βˆ’ ( f , g ) βˆ€ f , g ∈ V D ( A ) = { f ∈ V : βˆƒ c > 0 such that | a ( f , h ) | ≀ c οΏ½ h οΏ½ H βˆ€ h ∈ V } and οΏ½ Af , h οΏ½ = a ( f , h ) βˆ€ h ∈ V A : D ( A ) βŠ‚ H β†’ H generator of a semigroup e tA of contractions in H Theorem T > 0 , u 0 ∈ L 2 (Ω) , f ∈ L 2 (( 0 , T ) Γ— Ω) β‡’ βˆƒ ! u ∈ C ([ 0 , T ]; L 2 (Ω)) : βˆ€ t ∈ ( 0 , T ) , Ο† ∈ C 2 ([ 0 , T ] Γ— Ω) = οΏ½ t οΏ½ οΏ½ u ( βˆ‚ t Ο† + βˆ‚ 2 x Ο† + | x | 2 Ξ³ βˆ‚ 2 [ u ( t ) Ο† ( t ) βˆ’ u ( 0 ) Ο† ( 0 )] = y Ο† ) + Ο‡ Ο‰ f Ο† Ω 0 Ω P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 31 / 46

  61. control with interior degeneracy approximate controllability approximate controllability ⇐ β‡’ unique continuation Garofalo (1993): unique continuation for elliptic operator A = βˆ‚ 2 + | x | 2 Ξ³ βˆ‚ 2 y for parabolic operators: Proposition (BCG 2012) Let T > 0 , Ξ³ > 0 , let Ο‰ βŠ‚ ( 0 , 1 ) Γ— ( 0 , 1 ) , and let g ∈ C ([ 0 , T ]; H ) ∩ L 2 ( 0 , T ; V ) be a weak solution of οΏ½ βˆ‚ t g βˆ’ βˆ‚ 2 x g βˆ’ | x | 2 Ξ³ βˆ‚ 2 y g = 0 ( t , x , y ) ∈ ( 0 , ∞ ) Γ— Ω g ( t , x , y ) = 0 ( t , x , y ) ∈ ( 0 , ∞ ) Γ— βˆ‚ Ω If g ≑ 0 on ( 0 , T ) Γ— Ο‰ , then g ≑ 0 on ( 0 , T ) Γ— Ω . P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 32 / 46

  62. control with interior degeneracy approximate controllability approximate controllability ⇐ β‡’ unique continuation Garofalo (1993): unique continuation for elliptic operator A = βˆ‚ 2 + | x | 2 Ξ³ βˆ‚ 2 y for parabolic operators: Proposition (BCG 2012) Let T > 0 , Ξ³ > 0 , let Ο‰ βŠ‚ ( 0 , 1 ) Γ— ( 0 , 1 ) , and let g ∈ C ([ 0 , T ]; H ) ∩ L 2 ( 0 , T ; V ) be a weak solution of οΏ½ βˆ‚ t g βˆ’ βˆ‚ 2 x g βˆ’ | x | 2 Ξ³ βˆ‚ 2 y g = 0 ( t , x , y ) ∈ ( 0 , ∞ ) Γ— Ω g ( t , x , y ) = 0 ( t , x , y ) ∈ ( 0 , ∞ ) Γ— βˆ‚ Ω If g ≑ 0 on ( 0 , T ) Γ— Ο‰ , then g ≑ 0 on ( 0 , T ) Γ— Ω . P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 32 / 46

  63. control with interior degeneracy approximate controllability approximate controllability ⇐ β‡’ unique continuation Garofalo (1993): unique continuation for elliptic operator A = βˆ‚ 2 + | x | 2 Ξ³ βˆ‚ 2 y for parabolic operators: Proposition (BCG 2012) Let T > 0 , Ξ³ > 0 , let Ο‰ βŠ‚ ( 0 , 1 ) Γ— ( 0 , 1 ) , and let g ∈ C ([ 0 , T ]; H ) ∩ L 2 ( 0 , T ; V ) be a weak solution of οΏ½ βˆ‚ t g βˆ’ βˆ‚ 2 x g βˆ’ | x | 2 Ξ³ βˆ‚ 2 y g = 0 ( t , x , y ) ∈ ( 0 , ∞ ) Γ— Ω g ( t , x , y ) = 0 ( t , x , y ) ∈ ( 0 , ∞ ) Γ— βˆ‚ Ω If g ≑ 0 on ( 0 , T ) Γ— Ο‰ , then g ≑ 0 on ( 0 , T ) Γ— Ω . P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 32 / 46

  64. control with interior degeneracy approximate controllability approximate controllability ⇐ β‡’ unique continuation Garofalo (1993): unique continuation for elliptic operator A = βˆ‚ 2 + | x | 2 Ξ³ βˆ‚ 2 y for parabolic operators: Proposition (BCG 2012) Let T > 0 , Ξ³ > 0 , let Ο‰ βŠ‚ ( 0 , 1 ) Γ— ( 0 , 1 ) , and let g ∈ C ([ 0 , T ]; H ) ∩ L 2 ( 0 , T ; V ) be a weak solution of οΏ½ βˆ‚ t g βˆ’ βˆ‚ 2 x g βˆ’ | x | 2 Ξ³ βˆ‚ 2 y g = 0 ( t , x , y ) ∈ ( 0 , ∞ ) Γ— Ω g ( t , x , y ) = 0 ( t , x , y ) ∈ ( 0 , ∞ ) Γ— βˆ‚ Ω If g ≑ 0 on ( 0 , T ) Γ— Ο‰ , then g ≑ 0 on ( 0 , T ) Γ— Ω . P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 32 / 46

  65. control with interior degeneracy null controllability ο£± βˆ‚ t u βˆ’ βˆ‚ 2 x u βˆ’ | x | 2 Ξ³ βˆ‚ 2 y u = Ο‡ Ο‰ ( x , y ) f ( t , x , y ) ο£² u ( t , Β± 1 , y ) = 0 , u ( t , x , 0 ) = 0 = u ( t , x , 1 ) ( G ) ο£³ u ( 0 , x , y ) = u 0 ( x , y ) 1 y β™₯ Ω Ο‰ 1 x a b βˆ’ 1 0 Theorem (BCG 2012) 0 < Ξ³ < 1 β‡’ ( G ) null controllable βˆ€ T > 0 Ξ³ > 1 β‡’ ( G ) not null controllable βˆƒ T βˆ— οΏ½ a 2 / 2 Ξ³ = 1 & Ο‰ = ( a , b ) Γ— ( 0 , 1 ) = β‡’ such that ( G ) is null controllable βˆ€ T > T βˆ— not null controllable βˆ€ T < T βˆ— P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 33 / 46

  66. control with interior degeneracy null controllability ο£± βˆ‚ t u βˆ’ βˆ‚ 2 x u βˆ’ | x | 2 Ξ³ βˆ‚ 2 y u = Ο‡ Ο‰ ( x , y ) f ( t , x , y ) ο£² u ( t , Β± 1 , y ) = 0 , u ( t , x , 0 ) = 0 = u ( t , x , 1 ) ( G ) ο£³ u ( 0 , x , y ) = u 0 ( x , y ) 1 y β™₯ Ω Ο‰ 1 x a b βˆ’ 1 0 Theorem (BCG 2012) 0 < Ξ³ < 1 β‡’ ( G ) null controllable βˆ€ T > 0 Ξ³ > 1 β‡’ ( G ) not null controllable βˆƒ T βˆ— οΏ½ a 2 / 2 Ξ³ = 1 & Ο‰ = ( a , b ) Γ— ( 0 , 1 ) = β‡’ such that ( G ) is null controllable βˆ€ T > T βˆ— not null controllable βˆ€ T < T βˆ— P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 33 / 46

  67. control with interior degeneracy null controllability ο£± βˆ‚ t u βˆ’ βˆ‚ 2 x u βˆ’ | x | 2 Ξ³ βˆ‚ 2 y u = Ο‡ Ο‰ ( x , y ) f ( t , x , y ) ο£² u ( t , Β± 1 , y ) = 0 , u ( t , x , 0 ) = 0 = u ( t , x , 1 ) ( G ) ο£³ u ( 0 , x , y ) = u 0 ( x , y ) 1 y β™₯ Ω Ο‰ 1 x a b βˆ’ 1 0 Theorem (BCG 2012) 0 < Ξ³ < 1 β‡’ ( G ) null controllable βˆ€ T > 0 Ξ³ > 1 β‡’ ( G ) not null controllable βˆƒ T βˆ— οΏ½ a 2 / 2 Ξ³ = 1 & Ο‰ = ( a , b ) Γ— ( 0 , 1 ) = β‡’ such that ( G ) is null controllable βˆ€ T > T βˆ— not null controllable βˆ€ T < T βˆ— P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 33 / 46

  68. control with interior degeneracy null controllability ο£± βˆ‚ t u βˆ’ βˆ‚ 2 x u βˆ’ | x | 2 Ξ³ βˆ‚ 2 y u = Ο‡ Ο‰ ( x , y ) f ( t , x , y ) ο£² u ( t , Β± 1 , y ) = 0 , u ( t , x , 0 ) = 0 = u ( t , x , 1 ) ( G ) ο£³ u ( 0 , x , y ) = u 0 ( x , y ) 1 y β™₯ Ω Ο‰ 1 x a b βˆ’ 1 0 Theorem (BCG 2012) 0 < Ξ³ < 1 β‡’ ( G ) null controllable βˆ€ T > 0 Ξ³ > 1 β‡’ ( G ) not null controllable βˆƒ T βˆ— οΏ½ a 2 / 2 Ξ³ = 1 & Ο‰ = ( a , b ) Γ— ( 0 , 1 ) = β‡’ such that ( G ) is null controllable βˆ€ T > T βˆ— not null controllable βˆ€ T < T βˆ— P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 33 / 46

  69. control with interior degeneracy null controllability ο£± βˆ‚ t u βˆ’ βˆ‚ 2 x u βˆ’ | x | 2 Ξ³ βˆ‚ 2 y u = Ο‡ Ο‰ ( x , y ) f ( t , x , y ) ο£² u ( t , Β± 1 , y ) = 0 , u ( t , x , 0 ) = 0 = u ( t , x , 1 ) ( G ) ο£³ u ( 0 , x , y ) = u 0 ( x , y ) 1 y β™₯ Ω Ο‰ 1 x a b βˆ’ 1 0 Theorem (BCG 2012) 0 < Ξ³ < 1 β‡’ ( G ) null controllable βˆ€ T > 0 Ξ³ > 1 β‡’ ( G ) not null controllable βˆƒ T βˆ— οΏ½ a 2 / 2 Ξ³ = 1 & Ο‰ = ( a , b ) Γ— ( 0 , 1 ) = β‡’ such that ( G ) is null controllable βˆ€ T > T βˆ— not null controllable βˆ€ T < T βˆ— P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 33 / 46

  70. control with interior degeneracy observability ο£± βˆ‚ t v βˆ’ βˆ‚ 2 x v βˆ’ | x | 2 Ξ³ βˆ‚ 2 y v = 0 ο£² ( G βˆ— ) v ( t , Β± 1 , y ) = 0 , v ( t , x , 0 ) = 0 = v ( t , x , 1 ) ο£³ v ( 0 , x , y ) = v 0 ( x , y ) βˆƒ C T > 0 such that βˆ€ v 0 ∈ L 2 (Ω) observable in [ 0 , T ] Γ— Ο‰ οΏ½ T οΏ½ οΏ½ | v ( T , x , y ) | 2 dxdy ≀ C T | v ( t , x , y ) | 2 dxdy ( O ) Ω 0 Ο‰ Theorem (BCG 2012) ( G βˆ— ) 0 < Ξ³ < 1 β‡’ βˆ€ T > 0 observable ( G βˆ— ) Ξ³ > 1 β‡’ not observable βˆƒ T βˆ— οΏ½ a 2 / 2 ( G βˆ— ) Ξ³ = 1 & Ο‰ = ( a , b ) Γ— ( 0 , 1 ) = β‡’ such that is observable βˆ€ T > T βˆ— not observable βˆ€ T < T βˆ— P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 34 / 46

  71. control with interior degeneracy observability ο£± βˆ‚ t v βˆ’ βˆ‚ 2 x v βˆ’ | x | 2 Ξ³ βˆ‚ 2 y v = 0 ο£² ( G βˆ— ) v ( t , Β± 1 , y ) = 0 , v ( t , x , 0 ) = 0 = v ( t , x , 1 ) ο£³ v ( 0 , x , y ) = v 0 ( x , y ) βˆƒ C T > 0 such that βˆ€ v 0 ∈ L 2 (Ω) observable in [ 0 , T ] Γ— Ο‰ οΏ½ T οΏ½ οΏ½ | v ( T , x , y ) | 2 dxdy ≀ C T | v ( t , x , y ) | 2 dxdy ( O ) Ω 0 Ο‰ Theorem (BCG 2012) ( G βˆ— ) 0 < Ξ³ < 1 β‡’ βˆ€ T > 0 observable ( G βˆ— ) Ξ³ > 1 β‡’ not observable βˆƒ T βˆ— οΏ½ a 2 / 2 ( G βˆ— ) Ξ³ = 1 & Ο‰ = ( a , b ) Γ— ( 0 , 1 ) = β‡’ such that is observable βˆ€ T > T βˆ— not observable βˆ€ T < T βˆ— P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 34 / 46

  72. control with interior degeneracy observability ο£± βˆ‚ t v βˆ’ βˆ‚ 2 x v βˆ’ | x | 2 Ξ³ βˆ‚ 2 y v = 0 ο£² ( G βˆ— ) v ( t , Β± 1 , y ) = 0 , v ( t , x , 0 ) = 0 = v ( t , x , 1 ) ο£³ v ( 0 , x , y ) = v 0 ( x , y ) βˆƒ C T > 0 such that βˆ€ v 0 ∈ L 2 (Ω) observable in [ 0 , T ] Γ— Ο‰ οΏ½ T οΏ½ οΏ½ | v ( T , x , y ) | 2 dxdy ≀ C T | v ( t , x , y ) | 2 dxdy ( O ) Ω 0 Ο‰ Theorem (BCG 2012) ( G βˆ— ) 0 < Ξ³ < 1 β‡’ βˆ€ T > 0 observable ( G βˆ— ) Ξ³ > 1 β‡’ not observable βˆƒ T βˆ— οΏ½ a 2 / 2 ( G βˆ— ) Ξ³ = 1 & Ο‰ = ( a , b ) Γ— ( 0 , 1 ) = β‡’ such that is observable βˆ€ T > T βˆ— not observable βˆ€ T < T βˆ— P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 34 / 46

  73. control with interior degeneracy observability ο£± βˆ‚ t v βˆ’ βˆ‚ 2 x v βˆ’ | x | 2 Ξ³ βˆ‚ 2 y v = 0 ο£² ( G βˆ— ) v ( t , Β± 1 , y ) = 0 , v ( t , x , 0 ) = 0 = v ( t , x , 1 ) ο£³ v ( 0 , x , y ) = v 0 ( x , y ) βˆƒ C T > 0 such that βˆ€ v 0 ∈ L 2 (Ω) observable in [ 0 , T ] Γ— Ο‰ οΏ½ T οΏ½ οΏ½ | v ( T , x , y ) | 2 dxdy ≀ C T | v ( t , x , y ) | 2 dxdy ( O ) Ω 0 Ο‰ Theorem (BCG 2012) ( G βˆ— ) 0 < Ξ³ < 1 β‡’ βˆ€ T > 0 observable ( G βˆ— ) Ξ³ > 1 β‡’ not observable βˆƒ T βˆ— οΏ½ a 2 / 2 ( G βˆ— ) Ξ³ = 1 & Ο‰ = ( a , b ) Γ— ( 0 , 1 ) = β‡’ such that is observable βˆ€ T > T βˆ— not observable βˆ€ T < T βˆ— P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 34 / 46

  74. control with interior degeneracy method: Fourier decomposition ο£± βˆ‚ t v βˆ’ βˆ‚ 2 x v βˆ’ | x | 2 Ξ³ βˆ‚ 2 y v = 0 ο£² ( G βˆ— ) v ( t , Β± 1 , y ) = 0 , v ( t , x , 0 ) = 0 = v ( t , x , 1 ) ο£³ v ( 0 , x , y ) = v 0 ( x , y ) ∞ √ οΏ½ v ( t , x , y ) = v n ( t , x ) Ο• n ( y ) with Ο• n ( y ) := 2 sin ( n Ο€ y ) n = 1 οΏ½ 1 where v n ( t , x ) := 0 v ( t , x , y ) Ο• n ( y ) dy satisfies ο£± βˆ‚ t v n βˆ’ βˆ‚ 2 x v n + ( n Ο€ ) 2 | x | 2 Ξ³ v n = 0 ( t , x ) ∈ ( 0 , T ) Γ— ( βˆ’ 1 , 1 ) ο£² ( G βˆ— v n ( t , Β± 1 ) = 0 t ∈ ( 0 , T ) n ) ο£³ v n ( 0 , x ) = v 0 , n ( x ) x ∈ ( βˆ’ 1 , 1 ) οΏ½ 1 ∞ οΏ½ οΏ½ | v ( T , x , y ) | 2 dxdy = | v n ( T , x ) | 2 dx Ω βˆ’ 1 n = 1 οΏ½ b οΏ½ ∞ οΏ½ | v ( t , x , y ) | 2 dxdy = | v n ( t , x ) | 2 dx Ο‰ =( a , b ) Γ— ( 0 , 1 ) a n = 1 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 35 / 46

  75. control with interior degeneracy method: Fourier decomposition ο£± βˆ‚ t v βˆ’ βˆ‚ 2 x v βˆ’ | x | 2 Ξ³ βˆ‚ 2 y v = 0 ο£² ( G βˆ— ) v ( t , Β± 1 , y ) = 0 , v ( t , x , 0 ) = 0 = v ( t , x , 1 ) ο£³ v ( 0 , x , y ) = v 0 ( x , y ) ∞ √ οΏ½ v ( t , x , y ) = v n ( t , x ) Ο• n ( y ) with Ο• n ( y ) := 2 sin ( n Ο€ y ) n = 1 οΏ½ 1 where v n ( t , x ) := 0 v ( t , x , y ) Ο• n ( y ) dy satisfies ο£± βˆ‚ t v n βˆ’ βˆ‚ 2 x v n + ( n Ο€ ) 2 | x | 2 Ξ³ v n = 0 ( t , x ) ∈ ( 0 , T ) Γ— ( βˆ’ 1 , 1 ) ο£² ( G βˆ— v n ( t , Β± 1 ) = 0 t ∈ ( 0 , T ) n ) ο£³ v n ( 0 , x ) = v 0 , n ( x ) x ∈ ( βˆ’ 1 , 1 ) οΏ½ 1 ∞ οΏ½ οΏ½ | v ( T , x , y ) | 2 dxdy = | v n ( T , x ) | 2 dx Ω βˆ’ 1 n = 1 οΏ½ b οΏ½ ∞ οΏ½ | v ( t , x , y ) | 2 dxdy = | v n ( t , x ) | 2 dx Ο‰ =( a , b ) Γ— ( 0 , 1 ) a n = 1 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 35 / 46

  76. control with interior degeneracy method: Fourier decomposition ο£± βˆ‚ t v βˆ’ βˆ‚ 2 x v βˆ’ | x | 2 Ξ³ βˆ‚ 2 y v = 0 ο£² ( G βˆ— ) v ( t , Β± 1 , y ) = 0 , v ( t , x , 0 ) = 0 = v ( t , x , 1 ) ο£³ v ( 0 , x , y ) = v 0 ( x , y ) ∞ √ οΏ½ v ( t , x , y ) = v n ( t , x ) Ο• n ( y ) with Ο• n ( y ) := 2 sin ( n Ο€ y ) n = 1 οΏ½ 1 where v n ( t , x ) := 0 v ( t , x , y ) Ο• n ( y ) dy satisfies ο£± βˆ‚ t v n βˆ’ βˆ‚ 2 x v n + ( n Ο€ ) 2 | x | 2 Ξ³ v n = 0 ( t , x ) ∈ ( 0 , T ) Γ— ( βˆ’ 1 , 1 ) ο£² ( G βˆ— v n ( t , Β± 1 ) = 0 t ∈ ( 0 , T ) n ) ο£³ v n ( 0 , x ) = v 0 , n ( x ) x ∈ ( βˆ’ 1 , 1 ) οΏ½ 1 ∞ οΏ½ οΏ½ | v ( T , x , y ) | 2 dxdy = | v n ( T , x ) | 2 dx Ω βˆ’ 1 n = 1 οΏ½ b οΏ½ ∞ οΏ½ | v ( t , x , y ) | 2 dxdy = | v n ( t , x ) | 2 dx Ο‰ =( a , b ) Γ— ( 0 , 1 ) a n = 1 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 35 / 46

  77. control with interior degeneracy method: Fourier decomposition ο£± βˆ‚ t v βˆ’ βˆ‚ 2 x v βˆ’ | x | 2 Ξ³ βˆ‚ 2 y v = 0 ο£² ( G βˆ— ) v ( t , Β± 1 , y ) = 0 , v ( t , x , 0 ) = 0 = v ( t , x , 1 ) ο£³ v ( 0 , x , y ) = v 0 ( x , y ) ∞ √ οΏ½ v ( t , x , y ) = v n ( t , x ) Ο• n ( y ) with Ο• n ( y ) := 2 sin ( n Ο€ y ) n = 1 οΏ½ 1 where v n ( t , x ) := 0 v ( t , x , y ) Ο• n ( y ) dy satisfies ο£± βˆ‚ t v n βˆ’ βˆ‚ 2 x v n + ( n Ο€ ) 2 | x | 2 Ξ³ v n = 0 ( t , x ) ∈ ( 0 , T ) Γ— ( βˆ’ 1 , 1 ) ο£² ( G βˆ— v n ( t , Β± 1 ) = 0 t ∈ ( 0 , T ) n ) ο£³ v n ( 0 , x ) = v 0 , n ( x ) x ∈ ( βˆ’ 1 , 1 ) οΏ½ 1 ∞ οΏ½ οΏ½ | v ( T , x , y ) | 2 dxdy = | v n ( T , x ) | 2 dx Ω βˆ’ 1 n = 1 οΏ½ b οΏ½ ∞ οΏ½ | v ( t , x , y ) | 2 dxdy = | v n ( t , x ) | 2 dx Ο‰ =( a , b ) Γ— ( 0 , 1 ) a n = 1 P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 35 / 46

  78. control with interior degeneracy uniform observability ο£± βˆ‚ t v βˆ’ βˆ‚ 2 x v βˆ’ | x | 2 Ξ³ βˆ‚ 2 y v = 0 ( 0 , T ) Γ— Ω ο£² ( G βˆ— ) v ( t , Β± 1 , y ) = 0 , v ( t , x , 0 ) = 0 = v ( t , x , 1 ) t ∈ ( 0 , T ) ο£³ v ( 0 , x , y ) = v 0 ( x , y ) ( x , y ) ∈ Ω 1 y Ω Ο‰ 1 x a b βˆ’ 1 0 ο£± βˆ‚ t v n βˆ’ βˆ‚ 2 x v n + ( n Ο€ ) 2 | x | 2 Ξ³ v n = 0 ( t , x ) ∈ ( 0 , T ) Γ— ( βˆ’ 1 , 1 ) ο£² ( G βˆ— v n ( t , Β± 1 ) = 0 t ∈ ( 0 , T ) n ) ο£³ v n ( 0 , x ) = v 0 , n ( x ) x ∈ ( βˆ’ 1 , 1 ) observability for ( G βˆ— ) in Ο‰ uniform observability for ( G βˆ— ⇐ β‡’ n ) in ( a , b ) οΏ½ 1 οΏ½ T οΏ½ b | v n ( T , x ) | 2 dx ≀ C | v n ( t , x ) | 2 dxdt βˆ€ n β‰₯ 1 βˆ’ 1 0 a P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 36 / 46

  79. control with interior degeneracy uniform observability ο£± βˆ‚ t v βˆ’ βˆ‚ 2 x v βˆ’ | x | 2 Ξ³ βˆ‚ 2 y v = 0 ( 0 , T ) Γ— Ω ο£² ( G βˆ— ) v ( t , Β± 1 , y ) = 0 , v ( t , x , 0 ) = 0 = v ( t , x , 1 ) t ∈ ( 0 , T ) ο£³ v ( 0 , x , y ) = v 0 ( x , y ) ( x , y ) ∈ Ω 1 y Ω Ο‰ 1 x a b βˆ’ 1 0 ο£± βˆ‚ t v n βˆ’ βˆ‚ 2 x v n + ( n Ο€ ) 2 | x | 2 Ξ³ v n = 0 ( t , x ) ∈ ( 0 , T ) Γ— ( βˆ’ 1 , 1 ) ο£² ( G βˆ— v n ( t , Β± 1 ) = 0 t ∈ ( 0 , T ) n ) ο£³ v n ( 0 , x ) = v 0 , n ( x ) x ∈ ( βˆ’ 1 , 1 ) observability for ( G βˆ— ) in Ο‰ uniform observability for ( G βˆ— ⇐ β‡’ n ) in ( a , b ) οΏ½ 1 οΏ½ T οΏ½ b | v n ( T , x ) | 2 dx ≀ C | v n ( t , x ) | 2 dxdt βˆ€ n β‰₯ 1 βˆ’ 1 0 a P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 36 / 46

  80. control with interior degeneracy step 1: dissipation speed A n : D ( A n ) βŠ‚ L 2 ( βˆ’ 1 , 1 ) β†’ L 2 ( βˆ’ 1 , 1 ) define by D ( A n ) := H 2 ∩ H 1 A n Ο• := βˆ’ Ο• β€²β€² + ( n Ο€ ) 2 | x | 2 Ξ³ Ο• 0 ( βˆ’ 1 , 1 ) , Ξ» n := the first eigenvalue of A n so that οΏ½ βˆ‚ t v n βˆ’ βˆ‚ 2 x v n + ( n Ο€ ) 2 | x | 2 Ξ³ v n = 0 ( t , x ) ∈ ( 0 , T ) Γ— ( βˆ’ 1 , 1 ) v n ( t , Β± 1 ) = 0 t ∈ ( 0 , T ) satisfies οΏ½ 1 οΏ½ 1 | v n ( T , x ) | 2 dx ≀ e βˆ’ Ξ» n ( T βˆ’ t ) | v n ( t , x ) | 2 dx βˆ€ t ∈ [ 0 , T ] ( D n ) βˆ’ 1 βˆ’ 1 Lemma (dissipation speed) βˆƒ c βˆ— > 0 2 Ξ» n ≀ c βˆ— n (ub) βˆ€ Ξ³ > 0 such that 1 + Ξ³ 2 (lb) βˆ€ Ξ³ ∈ ( 0 , 1 ] βˆƒ c βˆ— > 0 such that Ξ» n β‰₯ c βˆ— n 1 + Ξ³ P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 37 / 46

  81. control with interior degeneracy step 1: dissipation speed A n : D ( A n ) βŠ‚ L 2 ( βˆ’ 1 , 1 ) β†’ L 2 ( βˆ’ 1 , 1 ) define by D ( A n ) := H 2 ∩ H 1 A n Ο• := βˆ’ Ο• β€²β€² + ( n Ο€ ) 2 | x | 2 Ξ³ Ο• 0 ( βˆ’ 1 , 1 ) , Ξ» n := the first eigenvalue of A n so that οΏ½ βˆ‚ t v n βˆ’ βˆ‚ 2 x v n + ( n Ο€ ) 2 | x | 2 Ξ³ v n = 0 ( t , x ) ∈ ( 0 , T ) Γ— ( βˆ’ 1 , 1 ) v n ( t , Β± 1 ) = 0 t ∈ ( 0 , T ) satisfies οΏ½ 1 οΏ½ 1 | v n ( T , x ) | 2 dx ≀ e βˆ’ Ξ» n ( T βˆ’ t ) | v n ( t , x ) | 2 dx βˆ€ t ∈ [ 0 , T ] ( D n ) βˆ’ 1 βˆ’ 1 Lemma (dissipation speed) βˆƒ c βˆ— > 0 2 Ξ» n ≀ c βˆ— n (ub) βˆ€ Ξ³ > 0 such that 1 + Ξ³ 2 (lb) βˆ€ Ξ³ ∈ ( 0 , 1 ] βˆƒ c βˆ— > 0 such that Ξ» n β‰₯ c βˆ— n 1 + Ξ³ P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 37 / 46

  82. control with interior degeneracy step 1: dissipation speed A n : D ( A n ) βŠ‚ L 2 ( βˆ’ 1 , 1 ) β†’ L 2 ( βˆ’ 1 , 1 ) define by D ( A n ) := H 2 ∩ H 1 A n Ο• := βˆ’ Ο• β€²β€² + ( n Ο€ ) 2 | x | 2 Ξ³ Ο• 0 ( βˆ’ 1 , 1 ) , Ξ» n := the first eigenvalue of A n so that οΏ½ βˆ‚ t v n βˆ’ βˆ‚ 2 x v n + ( n Ο€ ) 2 | x | 2 Ξ³ v n = 0 ( t , x ) ∈ ( 0 , T ) Γ— ( βˆ’ 1 , 1 ) v n ( t , Β± 1 ) = 0 t ∈ ( 0 , T ) satisfies οΏ½ 1 οΏ½ 1 | v n ( T , x ) | 2 dx ≀ e βˆ’ Ξ» n ( T βˆ’ t ) | v n ( t , x ) | 2 dx βˆ€ t ∈ [ 0 , T ] ( D n ) βˆ’ 1 βˆ’ 1 Lemma (dissipation speed) βˆƒ c βˆ— > 0 2 Ξ» n ≀ c βˆ— n (ub) βˆ€ Ξ³ > 0 such that 1 + Ξ³ 2 (lb) βˆ€ Ξ³ ∈ ( 0 , 1 ] βˆƒ c βˆ— > 0 such that Ξ» n β‰₯ c βˆ— n 1 + Ξ³ P. Cannarsa (Rome Tor Vergata) degenerate parabolic operators April 4, 2012 37 / 46

Recommend


More recommend