Consistent Approximations in Optimization Johannes O. Royset Professor of Operations Research Naval Postgraduate School, Monterey, California Supported in part by AFOSR, ONR, and DARPA Linz, Austria, November 2019 1 / 36
Searcher Trajectory t = 0 − t = 37.5 10 Target Trajectories 5 0 −5 −10 −20 −15 −10 −5 0 5 10 15 20 Searcher Trajectory t = 37.5 − t =75 10 Target Trajectories 5 0 −5 −10 −20 −15 −10 −5 0 5 10 15 20 Phelps, Royset & Gong, “Optimal Control of Uncertain Systems using Sample Average Approximations,” SIAM J. Control and Optimization, 2016 Stone, Royset & Washburn, Optimal Search for Moving Targets, Springer, 2016 2 / 36
� � � � � � Maximize probability of HVU survival hvu attackers defenders Walton, Lambrianides, Kaminer, Royset & Gong, “Optimal Motion Planning in Rapid-Fire Combat Situations with Attacker Uncertainty,” Naval Research Logistics, 2018 3 / 36
Seven defenders vs 100 attackers 4 / 36
� � � � � � � � Modeling probability of detection � � � , � ( � ) target � � searcher r ( x ( t ) , y ( t ))∆ t : probability of detection during [ t , t + ∆ t ) q ( t ): probability of no detection during [0 , t ] q ( t + ∆ t ) = q ( t )(1 − r ( x ( t ) , y ( t ))∆ t ) q ( t ) = − q ( t ) r ( x ( t ) , y ( t )), ˙ q (0) = 1 5 / 36
� � � � � � Target uncertainty � � , � ? � � target searcher { y ( t , ξ ) , t ∈ [0 , 1] } uncertain track of target; ξ random vector q ( t , ξ ): prob. of no detection during [0 , t ] given ξ q ( t , ξ ) = − q ( t , ξ ) r ( x ( t ) , y ( t , ξ ) , ξ ), q (0 , ξ ) = 1 ˙ � � E q (1 , ξ ) probability of no detection during [0 , 1] Combine q ( t , ξ ) with searcher state x ( t ) to get state x ( t , ξ ) ϕ ( x u (1 , ξ ) , ξ ) � � minimize E u ∈ U with x u ( · , ξ ) solving ˙ � � x ( t , ξ ) = f x ( t , ξ ) , u ( t ) , ξ ; x (0 , ξ ) = x 0 ( ξ ) a.s. 6 / 36
� � � � � � Attacker-Defender attackers defenders p 0 ( t , ξ ) = − r ( x ( t ) , y ( t , ξ ) , ξ ) p 0 ( t , ξ ) Q ( t ) ˙ � � p 1 ( t , ξ ) = − r ( x ( t ) , y ( t , ξ ) , ξ ) ˙ p 1 ( t , ξ ) − p 0 ( t , ξ ) Q ( t ) . . . � � p N − 1 ( t , ξ ) = − r ( x ( t ) , y ( t , ξ ) , ξ ) ˙ p N − 1 ( t , ξ ) − p N − 2 ( t , ξ ) Q ( t ) q 0 ( t , ξ ) = − s ( x ( t ) , y ( t , ξ ) , ξ ) q 0 ( t , ξ ) P ( t ) ˙ � � q 1 ( t , ξ ) = − s ( x ( t ) , y ( t , ξ ) , ξ ) ˙ q 1 ( t , ξ ) − q 0 ( t , ξ ) P ( t ) . . . � � q N − 1 ( t , ξ ) = − s ( x ( t ) , y ( t , ξ ) , ξ ) ˙ q N − 1 ( t , ξ ) − q N − 2 ( t , ξ ) P ( t ) � N − 1 � N − 1 P ( t ) = n =0 p n ( t ) Q ( t ) = n =0 q n ( t ) 7 / 36
Setting for presentation ( X , d ) metric space f ν , f : X → [ −∞ , ∞ ], usually lower semicontinuous (lsc) Actual problem: minimize f ( x ) x ∈ X f ν ( x ) Approximating problem: minimize x ∈ X Constraints often handled abstractly: Setting objective function to ∞ if x infeasible (wlog) 8 / 36
Setting for presentation ( X , d ) metric space f ν , f : X → [ −∞ , ∞ ], usually lower semicontinuous (lsc) Actual problem: minimize f ( x ) x ∈ X f ν ( x ) Approximating problem: minimize x ∈ X Constraints often handled abstractly: Setting objective function to ∞ if x infeasible (wlog) What constitutes a consistent approximation? Level 0: convergence of minimizers, minima Level 1: convergence of first-order stationary points 8 / 36
� � � � � Would pointwise convergence suffice? � � = � = � X 1 2 Pointwise convergence not sufficient for convergence of minimizers 9 / 36
� � What about uniform convergence? � ( � ) � ( � ) f argmin { � � � | � ( � ) � � } 10 / 36
� � � What about uniform convergence? � ( � ) � ( � ) � ( � ) f 11 / 36
� � � Uniform “approximation,” but large error in argmin � ( � ) � ( � ) f argmin { � � � | � � ( � ) � 0 } 12 / 36
� � � � Passing to epigraphs of the effective functions epi � epi � � � if � � ( � ) � 0 � � if � ( � ) � 0 � � = �� � � = �� otherwise otherwise 13 / 36
� � � � � Epi-convergence epi � epi � epi � � epi � � X f ν epi-converges to f ⇐ ⇒ epi f ν set-converges to epi f Main consequence: f ν epi-converges to f and x ν ∈ argmin f ν → ¯ x = ⇒ ¯ x ∈ argmin f 14 / 36
� � � � � � � Approximation of constraints � = � � 1 X � 1 15 / 36
� � � � � � � Approximation of constraints � = � � 1 X � 1 If C ν set-converges to C and f 0 continuous, then � � f 0 ( x ) if x ∈ C ν f 0 ( x ) if x ∈ C f ν ( x ) = epi-conv to f ( x ) = ∞ otherwise ∞ otherwise 15 / 36
� � � � � � � Approximation of constraints � = � � 1 X � 1 If C ν set-converges to C and f 0 continuous, then � � f 0 ( x ) if x ∈ C ν f 0 ( x ) if x ∈ C f ν ( x ) = epi-conv to f ( x ) = ∞ otherwise ∞ otherwise ⇒ C ν set-converges to C Example: C 1 , C 2 , . . . dense in C = X = 15 / 36
� � � Recall failure under uniform convergence What can be done in this case? � ( � ) � ( � ) � ( � ) f 16 / 36
Constraint softening minimize f 0 ( x ) subject to g i ( x ) ≤ 0 , i = 1 , . . . , q x ∈ X 0 ( x ) − f 0 ( x ) | ≤ α ν and sup | f ν sup i =1 ,..., q | g ν max i ( x ) − g i ( x ) | ≤ α ν x ∈ X x ∈ X 17 / 36
Constraint softening minimize f 0 ( x ) subject to g i ( x ) ≤ 0 , i = 1 , . . . , q x ∈ X 0 ( x ) − f 0 ( x ) | ≤ α ν and sup | f ν sup i =1 ,..., q | g ν max i ( x ) − g i ( x ) | ≤ α ν x ∈ X x ∈ X q � minimize x ∈ X , y ∈ R q f ν 0 ( x )+ θ ν y i subject to g ν i ( x ) ≤ y i , 0 ≤ y i , i = 1 , . . . , q i =1 17 / 36
Constraint softening minimize f 0 ( x ) subject to g i ( x ) ≤ 0 , i = 1 , . . . , q x ∈ X 0 ( x ) − f 0 ( x ) | ≤ α ν and sup | f ν sup i =1 ,..., q | g ν max i ( x ) − g i ( x ) | ≤ α ν x ∈ X x ∈ X q � minimize x ∈ X , y ∈ R q f ν 0 ( x )+ θ ν y i subject to g ν i ( x ) ≤ y i , 0 ≤ y i , i = 1 , . . . , q i =1 f 0 continuous g i lsc, i = 1 , . . . , q θ ν → ∞ , α ν → 0, θ ν α ν → 0 Then, approximation epi-converges to actual 17 / 36
Epi-convergence under sampling and forward Euler Searcher Trajectory t = 0 − t = 37.5 Target Trajectories 10 5 0 −5 −10 −20 −15 −10 −5 0 5 10 15 20 Searcher Trajectory t = 37.5 − t =75 10 Target Trajectories 5 0 −5 −10 −20 −15 −10 −5 0 5 10 15 20 ϕ ( x u (1 , ξ ) , ξ ) � � minimize E u ∈ U with x u ( · , ξ ) solving ˙ � � x ( t , ξ ) = f x ( t , ξ ) , u ( t ) , ξ ; x (0 , ξ ) = x 0 ( ξ ) a.s. Sampling and Forward Euler result in epi-convergence Phelps, Royset & Gong, “Optimal Control of Uncertain Systems using Sample Average Approximations,” SIAM J. Control and Optimization, 2016 18 / 36
Truncated Hausdorff distance between sets For C , D ⊂ X (metric space) C exs D B � ( � ) � �� d ˆ � � � l ρ ( C , D ) = max exs C ∩ B X ( ρ ); D , exs D ∩ B X ( ρ ); C 19 / 36
Consequence for minima and near-minimizers For f , g : X → [ −∞ , ∞ ], | inf f − inf g | ≤ d ˆ l ρ (epi f , epi g ) ≤ d ˆ � � exs ε - argmin g ∩ B X ( ρ ); δ - argmin f l ρ (epi f , epi g ) if δ > ε + 2 d ˆ l ρ (epi f , epi g ) (product metric is used on X × R and ρ large enough) Replace > by ≥ when f and g lsc and X has compact balls 20 / 36
Bounds are sharp ≤ d ˆ � � exs ε - argmin g ∩ B X ( ρ ); δ - argmin f l ρ (epi f , epi g ) if δ ≥ ε + 2 d ˆ l ρ (epi f , epi g ) epi � 1 epi � 1 2 � 1 21 / 36
What about minimizers? When f ( x ) − inf f ≥ g (dist( x , argmin f )) ∀ x ∈ X for incr g argmin f ν ∩ B X ( ρ ) , argmin f ≤ d ˆ � � exs l ρ (epi f , epi f ν ) + g − 1 � 2 d ˆ � l ρ (epi f , epi f ν ) � ( � � ) � inf � � ( � ) t 22 / 36
� � � Sharpness of bound on minimizers d ˆ l ρ (epi f , epi f ν ) = η = 1 / 2; f has growth g ( t ) = t 2 � � = � � � + 2 � argmin f ν ∩ B X ( ρ ) , argmin f ≤ η + g − 1 � � � � exs 2 η 23 / 36
Computing distances for compositions For κ -Lipschitz f : Y → R and F , G : X → Y , d ˆ ≤ max { 1 , κ } d ˆ � � l ρ epi( f ◦ F ) , epi( f ◦ G ) l ¯ ρ (gph F , gph G ) provided that ¯ ρ large enough 24 / 36
Distances for sums f i , g i : X → [ −∞ , ∞ ], i = 1 , 2, f 1 , g 1 are Lipschitz continuous with common modulus κ d ˆ � � epi( f 1 + f 2 ) , epi( g 1 + g 2 ) ≤ sup A ρ | f 1 − g 1 | l ρ d ˆ � � + 1 + κ ρ (epi f 2 , epi g 2 ) l ¯ provided that epi( f 1 + f 2 ) and epi( g 1 + g 2 ) are nonempty, A ρ = { f 1 + f 2 ≤ ρ } ∪ { g 1 + g 2 ≤ ρ } ∩ B X ( ρ ), ρ ≥ ρ + max { 0 , − inf B X ( ρ ) f 1 , − inf B X ( ρ ) g 1 } ¯ 25 / 36
Convergence of stationary points First-order conditions for minimize x ∈ X f ( x ): Oresme Rule: df ( x ; w ) ≥ 0 ∀ w ∈ X Fermat Rule: 0 ∈ ∂ f ( x ) 26 / 36
Recommend
More recommend