entropy power inequalities for qudits entropy power
play

Entropy power inequalities for qudits Entropy power inequalities for - PowerPoint PPT Presentation

Entropy power inequalities for qudits Entropy power inequalities for qudits M M aris Ozols aris Ozols University of Cambridge University of Cambridge Nilanjana Datta Nilanjana Datta Koenraad Audenaert Koenraad Audenaert University of


  1. Entropy power inequalities for qudits Entropy power inequalities for qudits M¯ M¯ aris Ozols aris Ozols University of Cambridge University of Cambridge Nilanjana Datta Nilanjana Datta Koenraad Audenaert Koenraad Audenaert University of Cambridge University of Cambridge Royal Holloway & Royal Holloway & Ghent University Ghent University

  2. Entropy power inequalities Quantum Classical Shannon Koenig & Smith [Sha48] [KS14, DMG14] Continuous This work — Discrete

  3. Entropy power inequalities Quantum Classical Shannon Koenig & Smith [Sha48] [KS14, DMG14] Continuous This work — Discrete f ( ρ ⊞ λ σ ) ≥ λ f ( ρ ) + ( 1 − λ ) f ( σ ) ◮ ρ , σ are distributions / states ◮ f ( · ) is an entropic function such as H ( · ) or e cH ( · ) ◮ ρ ⊞ λ σ interpolates between ρ and σ where λ ∈ [ 0, 1 ]

  4. Entropy power inequalities Quantum Classical Shannon Koenig & Smith [Sha48] [KS14, DMG14] Continuous ⊞ = convolution ⊞ = beamsplitter This work — Discrete ⊞ = partial swap f ( ρ ⊞ λ σ ) ≥ λ f ( ρ ) + ( 1 − λ ) f ( σ ) ◮ ρ , σ are distributions / states ◮ f ( · ) is an entropic function such as H ( · ) or e cH ( · ) ◮ ρ ⊞ λ σ interpolates between ρ and σ where λ ∈ [ 0, 1 ]

  5. Continuous random variables ◮ X is a random variable over R d with prob. density function � f X : R d → [ 0, ∞ ) s.t. R d f X ( x ) dx = 1 f X 0 1 2 3 4

  6. Continuous random variables ◮ X is a random variable over R d with prob. density function � f X : R d → [ 0, ∞ ) s.t. R d f X ( x ) dx = 1 ◮ α X is X scaled by α : f X f X f 2 X 0 1 2 3 4

  7. Continuous random variables ◮ X is a random variable over R d with prob. density function � f X : R d → [ 0, ∞ ) s.t. R d f X ( x ) dx = 1 ◮ α X is X scaled by α : f X f X f 2 X 0 1 2 3 4 ◮ prob. density of X + Y is the convolution of f X and f Y : f X f Y f X + Y = * - 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2

  8. Classical EPI for continuous variables ◮ Scaled addition: √ √ X ⊞ λ Y : = λ X + 1 − λ Y

  9. Classical EPI for continuous variables ◮ Scaled addition: √ √ X ⊞ λ Y : = λ X + 1 − λ Y ◮ Shannon’s EPI [Sha48]: f ( X ⊞ λ Y ) ≥ λ f ( X ) + ( 1 − λ ) f ( Y ) where f ( · ) is H ( · ) or e 2 H ( · ) / d (equivalent)

  10. Classical EPI for continuous variables ◮ Scaled addition: √ √ X ⊞ λ Y : = λ X + 1 − λ Y ◮ Shannon’s EPI [Sha48]: f ( X ⊞ λ Y ) ≥ λ f ( X ) + ( 1 − λ ) f ( Y ) where f ( · ) is H ( · ) or e 2 H ( · ) / d (equivalent) ◮ Proof via Fisher info & de Bruijn’s identity [Sta59, Bla65] ◮ Applications: ◮ upper bounds on channel capacity [Ber74] ◮ strengthening of the central limit theorem [Bar86] ◮ . . .

  11. Continuous quantum EPI ◮ Beamsplitter: ˆ ˆ a B d ρ 1 � ˆ � � ˆ � a c B = B ∈ U ( 2 ) ˆ ˆ ˆ b d c ˆ b ρ 2

  12. Continuous quantum EPI ◮ Beamsplitter: ˆ ˆ a B d ρ 1 � ˆ � � ˆ � a c B = B ∈ U ( 2 ) ˆ ˆ ˆ b d c ˆ b ρ 2 ◮ Transmissivity λ : √ √ B λ : = λ I + i 1 − λ X ⇒ U λ ∈ U ( H ⊗ H )

  13. Continuous quantum EPI ◮ Beamsplitter: ˆ ˆ a B d ρ 1 � ˆ � � ˆ � a c B = B ∈ U ( 2 ) ˆ ˆ ˆ b d ˆ c b ρ 2 ◮ Transmissivity λ : √ √ B λ : = λ I + i 1 − λ X ⇒ U λ ∈ U ( H ⊗ H ) ◮ Combining states: U λ ( ρ 1 ⊗ ρ 2 ) U † � � ρ 1 ⊞ λ ρ 2 : = Tr 2 λ

  14. Continuous quantum EPI ◮ Beamsplitter: ˆ ˆ a B d ρ 1 � ˆ � � ˆ � a c B = B ∈ U ( 2 ) ˆ ˆ ˆ b d c ˆ b ρ 2 ◮ Transmissivity λ : √ √ B λ : = λ I + i 1 − λ X ⇒ U λ ∈ U ( H ⊗ H ) ◮ Combining states: U λ ( ρ 1 ⊗ ρ 2 ) U † � � ρ 1 ⊞ λ ρ 2 : = Tr 2 λ ◮ Quantum EPI [KS14, DMG14]: f ( ρ 1 ⊞ λ ρ 2 ) ≥ λ f ( ρ 1 ) + ( 1 − λ ) f ( ρ 2 ) where f ( · ) is H ( · ) or e H ( · ) / d ( not equivalent)

  15. Continuous quantum EPI ◮ Beamsplitter: ˆ ˆ a B d ρ 1 � ˆ � � ˆ � a c B = B ∈ U ( 2 ) ˆ ˆ ˆ b d c ˆ b ρ 2 ◮ Transmissivity λ : √ √ B λ : = λ I + i 1 − λ X ⇒ U λ ∈ U ( H ⊗ H ) ◮ Combining states: U λ ( ρ 1 ⊗ ρ 2 ) U † � � ρ 1 ⊞ λ ρ 2 : = Tr 2 λ ◮ Quantum EPI [KS14, DMG14]: f ( ρ 1 ⊞ λ ρ 2 ) ≥ λ f ( ρ 1 ) + ( 1 − λ ) f ( ρ 2 ) where f ( · ) is H ( · ) or e H ( · ) / d ( not equivalent) ◮ Analogue, not a generalization

  16. Partial swap ◮ Swap: S | i , j � = | j , i � for all i , j ∈ { 1, . . . , d }

  17. Partial swap ◮ Swap: S | i , j � = | j , i � for all i , j ∈ { 1, . . . , d } ◮ Use S as a Hamiltonian: exp ( itS ) = cos t I + i sin t S

  18. Partial swap ◮ Swap: S | i , j � = | j , i � for all i , j ∈ { 1, . . . , d } ◮ Use S as a Hamiltonian: exp ( itS ) = cos t I + i sin t S ◮ Partial swap: √ √ U λ : = λ I + i 1 − λ S , λ ∈ [ 0, 1 ]

  19. Partial swap ◮ Swap: S | i , j � = | j , i � for all i , j ∈ { 1, . . . , d } ◮ Use S as a Hamiltonian: exp ( itS ) = cos t I + i sin t S ◮ Partial swap: √ √ U λ : = λ I + i 1 − λ S , λ ∈ [ 0, 1 ] ◮ Combining two qudits: U λ ( ρ 1 ⊗ ρ 2 ) U † � � ρ 1 ⊞ λ ρ 2 : = Tr 2 λ � = λρ 1 + ( 1 − λ ) ρ 2 − λ ( 1 − λ ) i [ ρ 1 , ρ 2 ]

  20. Main result Function f : D ( C d ) → R is � ≥ λ f ( ρ ) + ( 1 − λ ) f ( σ ) ◮ concave if f � λρ + ( 1 − λ ) σ ◮ symmetric if f ( ρ ) = s ( spec ( ρ )) for some sym. function s Theorem If f is concave and symmetric then for any ρ , σ ∈ D ( C d ) , λ ∈ [ 0, 1 ] f ( ρ ⊞ λ σ ) ≥ λ f ( ρ ) + ( 1 − λ ) f ( σ ) Proof Main tool: majorization. We show that spec ( ρ ⊞ λ σ ) ≺ λ spec ( ρ ) + ( 1 − λ ) spec ( σ )

  21. Summary of EPIs f ( ρ ⊞ λ σ ) ≥ λ f ( ρ ) + ( 1 − λ ) f ( σ ) Continuous variable Discrete Classical Quantum Quantum ( d dims) ( d modes) ( d dims) entropy � � � H ( · ) entropy 0 ≤ c ≤ 1/ ( log d ) 2 c = 2/ d c = 1/ d power e cH ( · ) entropy c = 1/ d photon — 0 ≤ c ≤ 1/ ( d − 1 ) number (conjectured) g − 1 ( cH ( · )) g ( x ) : = ( x + 1 ) log ( x + 1 ) − x log x

  22. Open problems ◮ Entropy photon number inequality for c.v. states ◮ classical capacities of various bosonic channels (thermal noise, bosonic broadcast, and wiretap channels) ◮ proved only for Gaussian states so far [Guh08] ◮ does not seem to follow by taking d → ∞

  23. Open problems ◮ Entropy photon number inequality for c.v. states ◮ classical capacities of various bosonic channels (thermal noise, bosonic broadcast, and wiretap channels) ◮ proved only for Gaussian states so far [Guh08] ◮ does not seem to follow by taking d → ∞ ◮ Conditional version of EPI ◮ trivial for c.v. distributions ◮ proved for Gaussian c.v. states [Koe15] ◮ qudit analogue.. . ?

  24. Open problems ◮ Entropy photon number inequality for c.v. states ◮ classical capacities of various bosonic channels (thermal noise, bosonic broadcast, and wiretap channels) ◮ proved only for Gaussian states so far [Guh08] ◮ does not seem to follow by taking d → ∞ ◮ Conditional version of EPI ◮ trivial for c.v. distributions ◮ proved for Gaussian c.v. states [Koe15] ◮ qudit analogue.. . ? ◮ Generalization to 3 or more systems ◮ trivial for c.v. distributions ◮ proved for c.v. states [DMLG15] ◮ combining three states: [Ozo15] ◮ proving the EPI.. . ?

  25. Open problems ◮ Entropy photon number inequality for c.v. states ◮ classical capacities of various bosonic channels (thermal noise, bosonic broadcast, and wiretap channels) ◮ proved only for Gaussian states so far [Guh08] ◮ does not seem to follow by taking d → ∞ ◮ Conditional version of EPI ◮ trivial for c.v. distributions ◮ proved for Gaussian c.v. states [Koe15] ◮ qudit analogue.. . ? ◮ Generalization to 3 or more systems ◮ trivial for c.v. distributions ◮ proved for c.v. states [DMLG15] ◮ combining three states: [Ozo15] ◮ proving the EPI.. . ? ◮ Applications ◮ upper bounding product-state classical capacity of certain channels ◮ more.. . ?

  26. Thank you Thank you

  27. Combining 3 states U ( ρ 1 ⊗ ρ 2 ⊗ ρ 3 ) U † � � Let ρ = Tr 2,3 where U = ∑ π ∈ S 3 z π Q π is a linear combination of 3-qudit permutations. Then [Ozo15] ρ = p 1 ρ 1 + p 2 ρ 2 + p 3 ρ 3 + √ p 1 p 2 sin δ 12 i [ ρ 1 , ρ 2 ] + √ p 1 p 2 cos δ 12 ( ρ 2 ρ 3 ρ 1 + ρ 1 ρ 3 ρ 2 ) + √ p 2 p 3 sin δ 23 i [ ρ 2 , ρ 3 ] + √ p 2 p 3 cos δ 23 ( ρ 3 ρ 1 ρ 2 + ρ 2 ρ 1 ρ 3 ) + √ p 3 p 1 sin δ 31 i [ ρ 3 , ρ 1 ] + √ p 3 p 1 cos δ 31 ( ρ 1 ρ 2 ρ 3 + ρ 3 ρ 2 ρ 1 ) for some probability distribution ( p 1 , p 2 , p 3 ) and angles δ ij s.t. δ 12 + δ 23 + δ 31 = 0 √ p 1 p 2 cos δ 12 + √ p 2 p 3 cos δ 23 + √ p 3 p 1 cos δ 31 = 0 Conjecture If f is concave and symmetric then f ( ρ ) ≥ p 1 f ( ρ 1 ) + p 2 f ( ρ 2 ) + p 3 f ( ρ 3 )

Recommend


More recommend