computing walrasian equilibrium
play

Computing Walrasian Equilibrium Renato Paes Leme - PowerPoint PPT Presentation

Computing Walrasian Equilibrium Renato Paes Leme Sam Wong (Google) (Berkeley) supplies: demand: flour, bakeries, milk, hospitals, vegetables, households, medicine, schools, paper,


  1. Computing Walrasian Equilibrium Renato Paes Leme Sam Wong (Google) (Berkeley)

  2. supplies: demand: flour, bakeries, milk, hospitals, vegetables, households, medicine, schools, paper, … …

  3. supplies: demand: flour, Task: Allocate supplies bakeries, milk, e ffi ciently to hospitals, vegetables, satisfy the demands households, medicine, of the city. schools, paper, … …

  4. supplies: demand: flour, Task: Allocate supplies bakeries, milk, e ffi ciently to hospitals, vegetables, satisfy the demands households, medicine, of the city. schools, paper, … … Invisible Hand of the market

  5. Theory of Market Equilibrium • Adam Smith: “Wealth of the Nations” (1776): invisible hand 
 • Leon Walras: “Elements of Pure Economics” (1874): mathematical 
 theory of market equilibrium 
 • Arrow-Debreu (1950’s): general equilibrium theory 
 • Kelso-Crawford (1982): discrete and combinatorial theory of market equilibr.

  6. Market equilibrium n goods m buyers

  7. Market equilibrium n goods m buyers v 3 v 2 v 1 v 4 v i : 2 N → R • Valuations

  8. Market equilibrium p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4 v i : 2 N → R • Valuations

  9. Market equilibrium p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4 v i : 2 N → R • Valuations • Demands D ( v i , p ) = argmax S ⊆ N [ v i ( S ) − P i ∈ S p i ]

  10. Market equilibrium p 3 p 5 p 1 p 2 p 4 p 6 n goods S 1 ∈ D ( v 1 , p ) m buyers v 3 v 2 v 1 v 4 v i : 2 N → R • Valuations • Demands D ( v i , p ) = argmax S ⊆ N [ v i ( S ) − P i ∈ S p i ]

  11. Market equilibrium p 3 p 5 p 1 p 2 p 4 p 6 n goods S 1 ∈ D ( v 1 , p ) S 2 ∈ D ( v 2 , p ) m buyers v 3 v 2 v 1 v 4 v i : 2 N → R • Valuations • Demands D ( v i , p ) = argmax S ⊆ N [ v i ( S ) − P i ∈ S p i ]

  12. Market equilibrium p 3 p 5 p 1 p 2 p 4 p 6 n goods S 1 ∈ D ( v 1 , p ) S 2 ∈ D ( v 2 , p ) ∅ ∈ D ( v 3 , p ) m buyers v 3 v 2 v 1 v 4 v i : 2 N → R • Valuations • Demands D ( v i , p ) = argmax S ⊆ N [ v i ( S ) − P i ∈ S p i ]

  13. Market equilibrium p 3 p 5 p 1 p 2 p 4 p 6 n goods S 1 ∈ D ( v 1 , p ) S 2 ∈ D ( v 2 , p ) S 4 ∈ D ( v 4 , p ) ∅ ∈ D ( v 3 , p ) m buyers v 3 v 2 v 1 v 4 v i : 2 N → R • Valuations • Demands D ( v i , p ) = argmax S ⊆ N [ v i ( S ) − P i ∈ S p i ]

  14. Market equilibrium • Market equilibrium: prices s.t. 
 S i ∈ D ( v i , p ) p ∈ R n i.e. each good is demanded by exactly one buyer. First Welfare Theorem : in equilibrium the welfare 
 P i v i ( S i ) is maximized. (proof: LP duality) How do markets converge to equilibrium prices ? How to compute a Walrasian equilibrium ?

  15. How to access the input Microscopic Macroscopic Telescopic

  16. How to access the input Microscopic Macroscopic Telescopic Value oracle: given i and S: 
 v i ( S ) query .

  17. How to access the input Microscopic Macroscopic Telescopic Value oracle: Demand oracle: given i and S: 
 given i and p: 
 v i ( S ) query . query . S ∈ D ( v i , p )

  18. How to access the input Microscopic Macroscopic Telescopic Value oracle: Demand oracle: Aggregate Demand: given p, query. given i and S: 
 given i and p: 
 v i ( S ) query . query . S ∈ D ( v i , p ) P i S i ; S i ∈ D ( v i , p )

  19. Algorithms for computing equilibria (general case) Algorithm Oracle Access Running time tatonnement (trial-and-error) [Walras, Kelso-Crawford, …]

  20. Walrasian tatonnement p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4

  21. Walrasian tatonnement p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4

  22. Walrasian tatonnement p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4

  23. Walrasian tatonnement p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4

  24. Walrasian tatonnement p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4

  25. Walrasian tatonnement +1 +1 − 1 p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4

  26. Walrasian tatonnement +1 +1 − 1 p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4

  27. Walrasian tatonnement +1 +1 − 1 p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4

  28. Walrasian tatonnement +1 +1 − 1 p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4

  29. Walrasian tatonnement +1 +1 − 1 p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4

  30. Walrasian tatonnement +1 +1 − 1 p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4

  31. Walrasian tatonnement +1 +1 − 1 p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4

  32. Walrasian tatonnement +1 +1 − 1 +1 p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4

  33. Walrasian tatonnement +1 +1 − 1 +1 p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4

  34. Walrasian tatonnement +1 +1 − 1 +1 p 3 p 5 p 1 p 2 p 4 p 6 n goods m buyers v 3 v 2 v 1 v 4

  35. Gradient Descent Interpretation • [Kelso-Crawford] analyzes it and shows convergence under a condition called gross substitutes. • pseudo poly algorithm

  36. 
 
 
 Gradient Descent Interpretation • [Kelso-Crawford] analyzes it and shows convergence under a condition called gross substitutes. • pseudo poly algorithm • [Ausubel] defined the potential: 
 f ( p ) = P i max S [ v i ( S ) − p ( S )] + p ([ n ]) such that gradient descent is exactly tatonnement: 
 ∂ j f ( p ) = 1 − [total demand for j ] • If equilibrium exists then equil prices = argmin f ( p )

  37. Algorithms for computing equilibria (general case) Algorithm Oracle Access Running time tatonnement / gradient descent pseudo poly aggregate demand [Walras, Kelso-Crawford, …]

  38. Algorithms for computing equilibria (general case) Algorithm Oracle Access Running time tatonnement / gradient descent pseudo poly aggregate demand [Walras, Kelso-Crawford, …] Linear programming demand + value 
 poly time [Nisan-Segal] oracle

  39. Algorithms for computing equilibria (general case) Algorithm Oracle Access Running time tatonnement / gradient descent pseudo poly aggregate demand [Walras, Kelso-Crawford, …] Linear programming demand + value 
 poly time [Nisan-Segal] oracle poly time aggregate demand this paper ˜ O ( n 2 · T AD + n 5 )

  40. From LP to convex optimization • Nisan and Segal LP: min P i u i + p ([ n ]) u i ≥ v i ( S ) − p ( S ) , ∀ i, S

  41. From LP to convex optimization • Nisan and Segal LP: • demand oracle finds separating constraint min P i u i + p ([ n ]) • value oracle to add the u i ≥ v i ( S ) − p ( S ) , ∀ i, S hyperplane

  42. From LP to convex optimization • Nisan and Segal LP: • demand oracle finds separating constraint min P i u i + p ([ n ]) • value oracle to add the u i ≥ v i ( S ) − p ( S ) , ∀ i, S hyperplane • Idea: using cutting plane method to minimize f ( p ) = P i [max S v i ( S ) − p ( S )] + p ([ n ])

  43. From LP to convex optimization • Nisan and Segal LP: • demand oracle finds separating constraint min P i u i + p ([ n ]) • value oracle to add the u i ≥ v i ( S ) − p ( S ) , ∀ i, S hyperplane • Idea: using cutting plane method to minimize f ( p ) = P i [max S v i ( S ) − p ( S )] + p ([ n ]) • Two issues with black box application: f ( p ) , ∂ f ( p ) • Evaluate f : ellipsoid and cutting plane need • Approximation : give only approximate solutions

  44. From LP to convex optimization • Optimizing only using the gradient 
 We adapt the cutting plane algorithm of 
 Lee-Sidford-Wong’15 to optimize f using only 
 ∂ f ( p ) • Obtaining exact solutions • Exact solution is only known for LPs [Khachiyan] • idea: explore the connection of this program and LP • But we have restricted access to constraints 
 (only via aggregate demand oracle) • Only a restricted perturbation is enough.

  45. Gross substitutes case

  46. Gross substitutes case necessary and “su ffi cient” condition for tatonnement to converge gross substitutes “increase in the price for one [Kelso-Crawford] good doesn’t decrease demand for other good.”

  47. Gross substitutes case necessary and “su ffi cient” condition for tatonnement to converge gross substitutes valuated matroids “increase in the price for one [Kelso-Crawford] [Dress-Wenzel] good doesn’t decrease demand for other good.” generalization of Grassman-Plucker relations, when can be v ( S ) − P S p j optimized using Greedy algo

  48. Gross substitutes case necessary and “su ffi cient” condition for tatonnement to converge gross substitutes valuated matroids “increase in the price for one [Kelso-Crawford] [Dress-Wenzel] good doesn’t decrease demand for other good.” generalization of Grassman-Plucker relations, when can be v ( S ) − P S p j optimized using Greedy algo (if those v ( S ) ∈ { 0 , −∞ } are matroids).

Recommend


More recommend