phase diagrams for melonic tensor disordered models
play

Phase Diagrams for Melonic Tensor / Disordered Models Fidel I. - PowerPoint PPT Presentation

Phase Diagrams for Melonic Tensor / Disordered Models Fidel I. Schaposnik Massolo Institut des Hautes Etudes Scientifiques Based on 1707.03431 and 1810.xxxxx In collaboration with T. Azeyanagi and F. Ferrari Critical Phenomena in


  1. Phase Diagrams for Melonic Tensor / Disordered Models Fidel I. Schaposnik Massolo Institut des Hautes ´ Etudes Scientifiques Based on 1707.03431 and 1810.xxxxx In collaboration with T. Azeyanagi and F. Ferrari Critical Phenomena in Statistical Mechanics and Quantum Field Theory Princeton Center for Theoretical Science - October 5, 2018

  2. Reverse engineering black holes Desirable features of a black hole model A) Macroscopic space-time description [Schwarzschild - 1916; Kerr - 1963; . . . ] Definition of the horizon [ Finkelstein - 1958; . . . ] Description of the interior [ Kruskal - 1960; Penrose, Hawking - 1965, 1970; . . . ] Entropy S = A / 4 G N [ Bekenstein - 1972; Bardeen, Carter, Hawking - 1973; . . . ] Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  3. Reverse engineering black holes Desirable features of a black hole model A) Macroscopic space-time description [Schwarzschild - 1916; Kerr - 1963; . . . ] Definition of the horizon [ Finkelstein - 1958; . . . ] Description of the interior [ Kruskal - 1960; Penrose, Hawking - 1965, 1970; . . . ] Entropy S = A / 4 G N [ Bekenstein - 1972; Bardeen, Carter, Hawking - 1973; . . . ] B) Consequences of the existence of the horizon Loss of time-reversal invariance Chaotic dynamics Unitarity problems / Information loss paradox Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  4. Reverse engineering black holes Desirable features of a black hole model A) Macroscopic space-time description [Schwarzschild - 1916; Kerr - 1963; . . . ] Definition of the horizon [ Finkelstein - 1958; . . . ] Description of the interior [ Kruskal - 1960; Penrose, Hawking - 1965, 1970; . . . ] Entropy S = A / 4 G N [ Bekenstein - 1972; Bardeen, Carter, Hawking - 1973; . . . ] B) Consequences of the existence of the horizon Loss of time-reversal invariance Chaotic dynamics Unitarity problems / Information loss paradox Can we study black holes starting from (B) and getting to (A) through holography? Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  5. Guiding principles Existence of parameter N Loss of time-reversal invariance / Unitarity problems � � Thermodynamical irreversibility (limit N → ∞ ) Chaotic dynamics F β ( t ) ∼ � ˆ O (0) ˆ O ( t ) ˆ O (0) ˆ O ( t ) � β, con . ∝ e λ L t Lyapunov exponent saturates bound for black holes λ L ≤ 2 π [ Maldacena, Shenker, Stanford - 2015 ] β Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  6. SYK model [ Sachdev, Ye - 1993; Kitaev - 2015 ] N Majorana fermions ψ 1 , . . . , ψ N in 0 + 1 dim. with Hamiltonian � H = J ijkl ψ i ψ j ψ k ψ l i < j < k < l Quenched disorder � σ 2 ( J ijkl ) ∝ J 2 � · � ≡ dJ ijkl p ( J ijkl ) � · � J ijkl with Some nice features Approximate conformal symmetry in IR = ⇒ NAdS 2 /NCFT 1 Analytical treatment for N → ∞ Explicit numerics for small N ( |H| = 2 N / 2 ) Saturates bound for λ L Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  7. SYK model [ Sachdev, Ye - 1993; Kitaev - 2015 ] N Majorana fermions ψ 1 , . . . , ψ N in 0 + 1 dim. with Hamiltonian � H = J ijkl ψ i ψ j ψ k ψ l i < j < k < l Quenched disorder � σ 2 ( J ijkl ) ∝ J 2 � · � ≡ dJ ijkl p ( J ijkl ) � · � J ijkl with Some nice features Approximate conformal symmetry in IR = ⇒ NAdS 2 /NCFT 1 Analytical treatment for N → ∞ Explicit numerics for small N ( |H| = 2 N / 2 ) Saturates bound for λ L Not a proper Quantum Field Theory :-( Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  8. Vector and matrix models: an overview Large D vector models Large N matrix models X a Field content φ µ with µ = 1 , . . . , D b with a , b = 1 , . . . , N U ( N ) 2 or U ( N ) Symmetry O ( D ) φ 2 � k for k = 1 , . . . Tr( XX † XX † · · · ) , . . . � � Interactions D V − P + ϕ = D 1 − ℓ N V − P + f = N 2 − 2 g Diag. scaling cacti diagrams Leading planar diagrams (auxiliary tree-level) cond. mat. ph., CFT, nucl. ph., QCD, Applications higher spin gravity string theory Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  9. New large N limit [ Ferrari - 2017; Ferrari, Rivasseau, Valette - 2017 ] O ( d ) × U ( n ) 2 model for a vector of complex matrices � � X µ 1 X † µ 2 · · · X µ 2 s − 1 X † Interaction vertices are V B = Tr µ 2 s � � 1 X µ X † � � + � Usual scaling S = nd 2 Tr B t B V B ( X µ ) µ Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  10. New large N limit [ Ferrari - 2017; Ferrari, Rivasseau, Valette - 2017 ] O ( d ) × U ( n ) 2 model for a vector of complex matrices � � X µ 1 X † µ 2 · · · X µ 2 s − 1 X † Interaction vertices are V B = Tr µ 2 s � � 1 X µ X † � � + � Usual scaling S = nd 2 Tr B t B V B ( X µ ) µ Enhance ’t Hooft coupling t B for V B as t B = λ B d E ( B ) with E ( B ) ≥ 0 In the n → ∞ limit � n 2 − 2 g F g F = g ≥ 0 In the d → ∞ limit ( g fixed) � d 1+ g − k / 2 F g , k F g = k ≥ 0 Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  11. Quartic models for fermionic matrices Fermionic matrices in 0 + 1 dimensions = 1 � � ( ψ † µ ) a b = ( ψ b µ a ) † ψ a µ b , ( ψ † ν ) c nd δ µν δ a d δ c with d b Desired features U ( n ) × O ( d ) invariance Single trace Hamiltonian � � ψ † Quadratic mass term m Tr µ ψ µ Quartic interactions + n � � � � ψ µ ψ † ν ψ µ ψ † ψ † ν ψ µ ψ † Tr = − Tr ν ψ µ , etc. ν d (Combinations ψ µ ψ µ and ψ † µ ψ † µ are suppressed) Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  12. Inequivalent interactions Crossing interactions = ⇒ E ( B ) = 1 / 2 λ Tr( ψ † µ ψ ν ψ † µ ψ ν ) λ ′ Tr( ψ † µ ψ † ν ψ µ ψ ν ) ξ Tr( ψ † µ ψ ν ψ µ ψ ν ) ξ ∗ Tr( ψ µ ψ † ν ψ † µ ψ † ν ) Non-crossing interactions = ⇒ E ( B ) = 0 κ Tr( ψ † µ ψ µ ψ † ν ψ ν ) κ ′ Tr( ψ µ ψ † µ ψ ν ψ † κ Tr( ψ † µ ψ µ ψ ν ψ † κ ∗ Tr( ψ µ ψ † µ ψ † ν ) ˜ ν ) ˜ ν ψ ν ) Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  13. Diagramatics Leading order diagrams are generated by melonic moves λ ′ λ ′ λ ′ λ ′ λ λ ξ ∗ ξ ∗ ξ ∗ ξ ∗ ξ ξ ξ ξ κ ∗ κ κ, ˜ ˜ κ ′ κ ∗ ˜ κ, ˜ Mixed structures ( λ, ξ ), . . . are avoided if we require � Tr( ψ µ ψ µ ) � = � Tr( ψ † µ ψ † µ ) � = 0 Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  14. Melon trees Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  15. Two basic models Charge preserving model with symmetry O ( d ) × U ( n ) 2 √ � � m ψ † µ ψ µ + 1 d ψ µ ψ † ν ψ µ ψ † H Q = nd Tr 2 λ ν λ ′ Tr( ψ † µ ψ † ν ψ µ ψ ν ) interaction renormalizes λ �→ λ + 2 λ ′ Charge violating model with symmetry O ( d ) × U ( n ) √ � � �� m ψ † µ ψ µ + 1 ξψ † µ ψ ν ψ µ ψ ν + ξ ∗ ψ † µ ψ † ν ψ † H � Q = nd Tr d µ ψ ν 2 , , . . . Melonic-dominated models = ⇒ Physics similar to SYK Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  16. Disordered model formulation µ b has d × n 2 fermionic degrees of freedom ψ a � � Hilbert space is 2 dn 2 dimensional :-( Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  17. Disordered model formulation µ b has d × n 2 fermionic degrees of freedom ψ a � � Hilbert space is 2 dn 2 dimensional :-( � � χ i , χ † = δ i Equivalent disordered models with N Dirac fermions j j i χ i + λ ij H Q = m χ † ˜ N 3 / 2 χ † i χ † kl j χ k χ l ξ i i χ j χ k χ l + ξ ijk i χ i + jkl H � Q = m χ † ˜ N 3 / 2 χ † N 3 / 2 χ † i χ † j χ † k χ l l Hilbert space is 2 N dimensional :-) WARNING: Equivalence is partial and only to leading large N (= n 2 d ) order! Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  18. Procedure Euclidean two-point function � � �� ψ µ ( t ) ψ † G ( t ) = Tr T µ β Fermionic perturbation theory m ≫ λ = ⇒ Exp. around decoupled fermionic oscillators T ≫ λ = ⇒ Non-standard (SYK-like) perturbation theory � G 0 ( t ) = e m ( β − t ) 1 2 sign ( t ) m → 0 , then T → 0 e m β + 1 = e − mt Θ( t ) T → 0 , then m → 0 Feynman diagram structure = ⇒ Schwinger-Dyson equations = + + · · · Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

  19. Schwinger-Dyson equations Expanding G ( t ) in Matsubara-Fourier modes G ( t ) = 1 ω k = 2 π � G k e − i ω k t k ∈ Z + 1 , β k with 2 β k The Schwinger-Dyson equations are � = λ 2 G ( t ) 2 G ( − t ) Σ Q ( t ) G − 1 = m − i ω k +Σ k G ( t ) 2 + 3 G ( − t ) 2 � k = − 1 4 | ξ | 2 G ( t ) � Σ � Q ( t ) Now Define S eff with Schwinger-Dyson equations as saddle-points Relate its on-shell value to the free energy F = − 1 β log Tr e − β H Fidel I. Schaposnik Massolo - IHES Phase Diagrams for Melonic Tensor / Disordered Models

Recommend


More recommend