computing the rank of big sparse matrices modulo p using
play

Computing the rank of big sparse matrices modulo p using gaussian - PowerPoint PPT Presentation

Computing the rank of big sparse matrices modulo p using gaussian elimination Charles Bouillaguet 1 Claire Delaplace 2 12 CRIStAL, Universit de Lille 2 IRISA, Universit de Rennes 1 JNCF, 16 janvier 2017 Claire Delaplace Sparse elimination Mod


  1. Computing the rank of big sparse matrices modulo p using gaussian elimination Charles Bouillaguet 1 Claire Delaplace 2 12 CRIStAL, Université de Lille 2 IRISA, Université de Rennes 1 JNCF, 16 janvier 2017 Claire Delaplace Sparse elimination Mod p JNCF 2017 1 / 20

  2. Sparse Linear Algebra Background Sparse Linear Algebra Modulo p (coefficients : int) Operations Rank Linear systems Kernel etc... Claire Delaplace Sparse elimination Mod p JNCF 2017 2 / 20

  3. Sparse Linear Algebra Background Sparse Linear Algebra Modulo p (coefficients : int) Operations Rank Linear systems Kernel etc... Two families of Algorithms Direct methods (Gaussian Elimination, LU, ...) Iterative methods (Wiedemann, Lanczos...) Claire Delaplace Sparse elimination Mod p JNCF 2017 2 / 20

  4. Sparse Linear Algebra Related Work Algorithms Comparison between a sparse gaussian elimination and the Wiedmann algorithm: [Dumas & Villard 02] Direct methods in the numerical world (e.g. [Davis 06]) Pivots selection heuristic for Gröbner Basis Matrices [Faugère & Lacharte 10] Software Exact: not much (LinBox, GBLA ( Gröbner basis ), MAGMA) Numeric: many (SuperLU, UMFPACK, ...) Claire Delaplace Sparse elimination Mod p JNCF 2017 3 / 20

  5. Sparse Linear Algebra PLUQ Factorization U × Q − 1 = P × A L L has non zero diagonal A can be rectangular U has unit diagonal A can be rank deficient Claire Delaplace Sparse elimination Mod p JNCF 2017 4 / 20

  6. Sparse Linear Algebra Right-looking and Left-looking LU Left-looking GPLU Algorithm Usual right-looking Algorithm: [Gilbert & Peierls 88] U U A L S L Claire Delaplace Sparse elimination Mod p JNCF 2017 5 / 20

  7. Sparse Linear Algebra Right-looking and Left-looking LU Left-looking GPLU Algorithm Usual right-looking Algorithm: [Gilbert & Peierls 88] U U A L L Data access Claire Delaplace Sparse elimination Mod p JNCF 2017 5 / 20

  8. Sparse Linear Algebra Right-looking and Left-looking LU Left-looking GPLU Algorithm Usual right-looking Algorithm: [Gilbert & Peierls 88] U U A L S L Claire Delaplace Sparse elimination Mod p JNCF 2017 5 / 20

  9. Sparse Linear Algebra Right-looking and Left-looking LU Left-looking GPLU Algorithm Usual right-looking Algorithm: [Gilbert & Peierls 88] U U A L S Data access Claire Delaplace Sparse elimination Mod p JNCF 2017 5 / 20

  10. Sparse Linear Algebra Right-looking and Left-looking LU Left-looking GPLU Algorithm Usual right-looking Algorithm: [Gilbert & Peierls 88] U U A L S L Claire Delaplace Sparse elimination Mod p JNCF 2017 5 / 20

  11. Sparse Linear Algebra An up-looking variant of the GPLU U Row-by-row version L Adapted to Computer Algebra A Claire Delaplace Sparse elimination Mod p JNCF 2017 6 / 20

  12. Sparse Linear Algebra An up-looking variant of the GPLU Row-by-row version L Data access Adapted to Computer Algebra A Claire Delaplace Sparse elimination Mod p JNCF 2017 6 / 20

  13. Sparse Linear Algebra An up-looking variant of the GPLU U Row-by-row version L Adapted to Computer Algebra A Claire Delaplace Sparse elimination Mod p JNCF 2017 6 / 20

  14. Sparse Linear Algebra GPLU Algorithm: Application to Exact Linear Algebra Never been used before for exact computations We implemented it We benchmarked it against LinBox (sparse right-looking) Our Benchmarks show: GPLU work best when U is very sparse Sometimes GPLU outperform the right-looking algorithm (often) Sometimes the right-looking algorithm outperform GPLU (less often) = ⇒ Can we take advantage of both methods? Claire Delaplace Sparse elimination Mod p JNCF 2017 7 / 20

  15. A new hybrid algorithm Our Work: A New Hybrid Algorithm (CASC 2016) Description Find many pivots without performing any arithmetical operations. Compute the Schur complement S , using an up-looking algorithm. Compute the rank of S . Claire Delaplace Sparse elimination Mod p JNCF 2017 8 / 20

  16. A new hybrid algorithm Our Work: A New Hybrid Algorithm (CASC 2016) Description Find many pivots without performing any arithmetical operations. Compute the Schur complement S , using an up-looking algorithm. Compute the rank of S . Rank of S Recurse Dense rank computation Wiedemann Algorithm ... Claire Delaplace Sparse elimination Mod p JNCF 2017 8 / 20

  17. A new hybrid algorithm Example: Claire Delaplace Sparse elimination Mod p JNCF 2017 9 / 20

  18. A new hybrid algorithm Example: Set of pivots found without any arith- metical operations Claire Delaplace Sparse elimination Mod p JNCF 2017 9 / 20

  19. A new hybrid algorithm Example: Schur Complement Claire Delaplace Sparse elimination Mod p JNCF 2017 9 / 20

  20. A new hybrid algorithm Example: Claire Delaplace Sparse elimination Mod p JNCF 2017 9 / 20

  21. A new hybrid algorithm Example: Claire Delaplace Sparse elimination Mod p JNCF 2017 9 / 20

  22. A new hybrid algorithm Example: Claire Delaplace Sparse elimination Mod p JNCF 2017 9 / 20

  23. A new hybrid algorithm Example: Parallelizable Claire Delaplace Sparse elimination Mod p JNCF 2017 9 / 20

  24. A new hybrid algorithm Initial Pivots Selection Heuristic [Faugère & Lachartre 10]     0 • • • • 4 • • • 1 • • • 2 • •         2 • • 1 • • •         3 • 3 •         4 • • • 5 • •         5 • • 0 • • • •         6 • • • 6 • • •     7 • • • • 7 • • • • Description Each row is mapped to the column of its leftmost coefficient. When several rows have the same leftmost coefficient, select the sparsest. Move the selected rows before the others and sort them by increasing position of the leftmost coefficient. Claire Delaplace Sparse elimination Mod p JNCF 2017 10 / 20

  25. A new hybrid algorithm Schur Complement Computation P denotes the permutation that pushes the pre-computed pivots in the top of A . Ignoring permutation over the columns of A : � � � L 00 � � U 00 � A 00 A 01 U 01 PA = = · A 10 A 11 L 10 L 11 U 11 Claire Delaplace Sparse elimination Mod p JNCF 2017 11 / 20

  26. A new hybrid algorithm Schur Complement Computation P denotes the permutation that pushes the pre-computed pivots in the top of A . Ignoring permutation over the columns of A : � � � L 00 � � U 00 � A 00 A 01 U 01 PA = = · A 10 A 11 L 10 L 11 U 11 Definition The Schur Complement S of PA with respect to U 00 is given by : S = A 11 − A 10 U − 1 00 U 01 Claire Delaplace Sparse elimination Mod p JNCF 2017 11 / 20

  27. A new hybrid algorithm Schur Complement Computation P denotes the permutation that pushes the pre-computed pivots in the top of A . Ignoring permutation over the columns of A : � � � L 00 � � U 00 � A 00 A 01 U 01 PA = = · A 10 A 11 L 10 L 11 U 11 Definition The Schur Complement S of PA with respect to U 00 is given by : S = A 11 − A 10 U − 1 00 U 01 Denote by ( a i 0 a i 1 ) the i -th row of ( A 10 A 11 ) , and consider the following system : � U 00 � U 01 ( x 0 x 1 ) · = ( a i 0 a i 1 ) Id Claire Delaplace Sparse elimination Mod p JNCF 2017 11 / 20

  28. A new hybrid algorithm Schur Complement Computation P denotes the permutation that pushes the pre-computed pivots in the top of A . Ignoring permutation over the columns of A : � � � L 00 � � U 00 � A 00 A 01 U 01 PA = = · A 10 A 11 L 10 L 11 U 11 Definition The Schur Complement S of PA with respect to U 00 is given by : S = A 11 − A 10 U − 1 00 U 01 Denote by ( a i 0 a i 1 ) the i -th row of ( A 10 A 11 ) , and consider the following system : � U 00 � U 01 ( x 0 x 1 ) · = ( a i 0 a i 1 ) Id We obtain x 1 = a i 1 − a i 0 U − 1 00 U 01 . x 1 is the i-th row of S Claire Delaplace Sparse elimination Mod p JNCF 2017 11 / 20

  29. A new hybrid algorithm Schur Complement Computation In a Nutshell: Each row of S can be computed independently Guess if S is sparse or dense by computing some random rows If S sparse : compute S using the previous method The Schur complement computation is parallelizable Claire Delaplace Sparse elimination Mod p JNCF 2017 12 / 20

  30. A new hybrid algorithm Performance of the Hybrid Algorithm (CASC 2016) Experiments carried on an Intel Core i7-3770 with 8 GB of RAM Experiments carried on all matrices from SIMC with integer coefficents Only one core used Hybrid versus Right-looking (Linbox) and GPLU (time in s) Matrix Right-looking GPLU Hybrid 34 276 11.6 GL7d/GL7d24 Margulies/cat_ears_4_4 3 184 0.1 173 0.2 0.2 Homology/ch7-8.b4 611 45 10.7 Homology/ch7-8.b5 Hybrid versus Wiedmann (time in s) Matrix Wiedmann Hybrid M0,6-D7 20397 0.8 relat8 244 2 relat9 176694 2024 Claire Delaplace Sparse elimination Mod p JNCF 2017 13 / 20

  31. Recent Improvement: Better Pivots Selection Heuristic New: Improvement of the Pivots Selection Heuristic Why Enable us to reduce the number of the elimination steps Keep U sparse ⇒ fast elimination steps Claire Delaplace Sparse elimination Mod p JNCF 2017 14 / 20

Recommend


More recommend