computer graphics iii light reflection brdf
play

Computer graphics III Light reflection, BRDF Jaroslav Kivnek, MFF - PowerPoint PPT Presentation

Computer graphics III Light reflection, BRDF Jaroslav Kivnek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Recap Basic radiometric quantities Image: Wojciech Jarosz CG III (NPGR010) - J. Kivnek Interaction of light with a surface


  1. Computer graphics III – Light reflection, BRDF Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz

  2. Recap – Basic radiometric quantities Image: Wojciech Jarosz CG III (NPGR010) - J. Křivánek

  3. Interaction of light with a surface ◼ Absorption ◼ Reflection ◼ Transmission / refraction ◼ Reflective properties of materials determine ❑ the relation of reflected radiance L r to incoming radiance L i , and therefore ❑ the appearance of the object: color, glossiness, etc. CG III (NPGR010) - J. Křivánek

  4. Interaction of light with a surface ◼ Same illumination ◼ Different materials Source: MERL BRDF database CG III (NPGR010) - J. Křivánek

  5. Recall the Phong shading model N R L V ( ) =  +  n C I k ( N L ) k ( V R ) d s =  − R 2 ( N L ) N L CG III (NPGR010) - J. Křivánek

  6. I) Adopt radiometric notation n r  i  i  r  o ( )  =   +  n L ( ) L ( ) k cos k cos o o i i d i s r  =   =   −  cos 2 ( ) r r n n r o i i Exact same thing as on the previous slide – just using physically-based notation. CG III (NPGR010) - J. Křivánek

  7. BRDF corresponding to the original Phong shading model n r  i  i  r  o  n L cos = = + o Phong Orig f r f k k BRDF:  r  r d s L cos cos i i i General definition of a BRDF Application of this definition to the Phong shading formula. CG III (NPGR010) - J. Křivánek

  8. BRDF – Formal definition ◼ B idirectional R eflectance D istribution F unction n L i (  i ) „ o utgoing “ L r (  o ) d  i  i  o „ i ncoming“ „ r eflected “  d L ( ) −  →  = 1 r o f r ( ) [ sr ]      i o L ( ) cos d i i i i CG III (NPGR010) - J. Křivánek

  9. BRDF ◼ Mathematical model of the reflection properties of a surface ◼ Intuition ❑ Value of a BRDF = probability density , describing the event that a light energy “packet”, or “photon” , coming from direction  i gets reflected to the direction  o .  )  →    ◼ Range: f ( ) 0 , r i o CG III (NPGR010) - J. Křivánek

  10. BRDF Westin et al. Predicting Reflectance Functions from Complex Surfaces, SIGGRAPH 1992. ◼ The BRDF is a model of the bulk behavior of light on the microstructure when viewed from distance CG III (NPGR010) - J. Křivánek

  11. Surface roughness and blurred reflections ◼ The rougher the blurrier Microscopic surface roughness CG III (NPGR010) - J. Křivánek

  12. Surface appearance and the BRDF Appearance BRDF lobe (for four different viewing directions) CG III (NPGR010) - J. Křivánek Souce: Ngan et al. Experimental analysis of BRDF models, http://people.csail.mit.edu/addy/research/brdf/

  13. Surface appearance and the BRDF Appearance BRDF lobe (for four different viewing directions) CG III (NPGR010) - J. Křivánek Souce: Ngan et al. Experimental analysis of BRDF models, http://people.csail.mit.edu/addy/research/brdf/

  14. Surface appearance and the BRDF Appearance BRDF lobe (for four different viewing directions) CG III (NPGR010) - J. Křivánek Souce: Ngan et al. Experimental analysis of BRDF models, http://people.csail.mit.edu/addy/research/brdf/

  15. Surface appearance and the BRDF Appearance BRDF lobe (for four different viewing directions) CG III (NPGR010) - J. Křivánek Souce: Ngan et al. Experimental analysis of BRDF models, http://people.csail.mit.edu/addy/research/brdf/

  16. BRDF properties ◼ Helmholz reciprocity (always holds in nature, a physically-plausible BRDF model must follow it)  →  =  →  f ( ) f ( ) r i o r o i CG III (NPGR010) - J. Křivánek

  17. BRDF properties ◼ Energy conservation ❑ A patch of surface cannot reflect more light energy than it receives CG III (NPGR010) - J. Křivánek

  18. BRDF (an)isotropy ◼ Isotropic BRDF = invariant to a rotation around surface normal ( ) ( )     =   +    +  f , ; , f , ; , r i i o o r i i o o ( ) =    −  f , , r i o o i CG III (NPGR010) - J. Křivánek

  19. Surfaces with anisotropic BRDF CG III (NPGR010) - J. Křivánek

  20. Anisotropic BRDF ◼ Different microscopic roughness in different directions (brushed metals, fabrics , …) CG III (NPGR010) - J. Křivánek

  21. Isotropic vs. anisotropic BRDF ◼ Isotropic BRDFs have only 3 degrees of freedom ❑ Instead of  i and  o it is enough to consider only D =  i –  o ❑ But this is not enough to describe an anisotropic BRDF ◼ Description of an anisotropic BRDF ❑  i and  o are expressed in a local coordinate frame ( U , V , N ) U … tangent – e.g. the direction of brushing ◼ V … binormal ◼ N … surface normal … the Z axis of the local coordinate frame ◼ CG III (NPGR010) - J. Křivánek

  22. Reflection equation ◼ A.k.a. reflectance equation, illumination integral, OVTIGRE (“ outgoing, vacuum, time-invariant, gray radiance equation ”) ◼ “How much total light gets reflected in the direction  o ?“ ◼ From the definition of the BRDF, we have  =  →       d L ( ) f ( ) L ( ) cos d r o r i o i i i i CG III (NPGR010) - J. Křivánek

  23. Reflection equation ◼ Total reflected radiance: integrate contributions of incident radiance, weighted by the BRDF, over the hemisphere   =    →     L ( ) L ( ) f ( ) cos d r o i i r i o i i H ( ) x upper hemisphere over x = න CG III (NPGR010) - J. Křivánek 2015

  24. Reflection equation ◼ Evaluating the reflectance equation renders images!!! ❑ Direct illumination Environment maps ◼ Area light sources ◼ etc. ◼ CG III (NPGR010) - J. Křivánek

  25. Energy conservation – More rigorous ◼ Reflected flux per unit area (i.e. radiosity B ) cannot be larger than the incoming flux per unit surface area (i.e. irradiance E ).     L ( ) cos d B = r o o o =     E L ( ) cos d i i i i      →       f ( ) L ( ) cos d cos d = r i o i i i i o o =     L ( ) cos d i i i i  1 CG III (NPGR010) - J. Křivánek

  26. Reflectance ◼ Ratio of the incoming and outgoing flux ❑ A.k.a . „albedo“ ( used mostly for diffuse reflection) ◼ Hemispherical-hemispherical reflectance ❑ See the “Energy conservation” slide ◼ Hemispherical-directional reflectance ❑ The amount of light that gets reflected in direction  o when illuminated by the unit, uniform incoming radiance.    =  =  →    ( ) a ( ) f ( ) cos d o o r i o i i H ( x ) CG III (NPGR010) - J. Křivánek

  27. Hemispherical-directional reflectance ◼ Nonnegative     o  ( ) 0 , 1 ◼ Less than or equal to 1 (energy conservation) ◼ Equal to directional-hemispherical reflectance ❑ What is the percentage of the energy coming from the incoming direction  i that gets reflected (to any direction )?“ ❑ Equality follows from the Helmholz reciprocity CG III (NPGR010) - J. Křivánek

  28. CG III (NPGR010) - J. Křivánek

  29. CG III (NPGR010) - J. Křivánek

  30. BRDF components General BRDF Ideal diffuse Ideal specular Glossy, (Lambertian) directional diffuse CG III (NPGR010) - J. Křivánek

  31. Ideal diffuse reflection

  32. Ideal diffuse reflection CG III (NPGR010) - J. Křivánek

  33. Ideal diffuse reflection ◼ A.k.a. Lambertian reflection Johann Heinrich Lambert, „ Photometria “ , 1760. ❑ ◼ Postulate: Light gets reflected to all directions with the same probability, irrespective of the direction it came from ◼ The corresponding BRDF is a constant function (independent of  i ,  o )  →  = f ( ) f r , d i o r , d CG III (NPGR010) - J. Křivánek

  34. Ideal diffuse reflection ◼ Reflection on a Lambertian surface:   =    L ( ) f L ( ) cos d o o r , d i i i i H ( x ) = f E r , d irradiance ◼ View independent appearance ❑ Outgoing radiance L o is independent of  o ◼ Reflectance (derive)  =   f , d r d CG III (NPGR010) - J. Křivánek

  35. Ideal diffuse reflection ◼ Mathematical idealization that does not exist in nature ◼ The actual behavior of natural materials deviates from the Lambertian assumption especially for grazing incidence angles CG III (NPGR010) - J. Křivánek

  36. White-out conditions ◼ Under a covered sky we cannot tell the shape of a terrain covered by snow ◼ We do not have this problem close to a localized light source. ◼ Why? CG III (NPGR010) - J. Křivánek

  37. White-out conditions ◼ We assume sky radiance independent of direction (covered sky)  = sky L ( , ) L x i i ◼ We also assume Lambertian reflection on snow ◼ Reflected radiance given by: =   snow snow sky L L o d i White-out!!! CG III (NPGR010) - J. Křivánek

  38. Ideal mirror reflection

  39. Ideal mirror reflection CG III (NPGR010) - J. Křivánek

  40. CG III (NPGR010) - J. Křivánek

  41. CG III (NPGR010) - J. Křivánek Nishino, Nayar: Eyes for Relighting, SIGGRAPH 2004

Recommend


More recommend