compressive parameter estimation via approximate message
play

Compressive Parameter Estimation via Approximate Message Passing - PowerPoint PPT Presentation

Compressive Parameter Estimation via Approximate Message Passing Marco F. Duarte Joint work with Shermin Hamzehei IEEE ICASSP - April 22 2015 Concise Signal Structure Sparse signal: only K out of N n n x = coefficients


  1. Compressive Parameter Estimation via 
 Approximate Message Passing Marco F. Duarte Joint work with Shermin Hamzehei IEEE ICASSP - April 22 2015

  2. Concise Signal Structure � • Sparse signal: only K out of N 
 ψ n θ n x = coefficients are nonzero n – model: union of K -dimensional subspaces 
 x = Ψ θ aligned w/ coordinate axes Ψ − 1 θ = x = R N sparse 
 signal θ nonzero ⊆ Σ K entries

  3. 
 
 From Samples to Measurements • Replace samples by more general encoder 
 based on a few linear projections (inner products) 
 , x is sparse y x sparse 
 measurements signal information rate

  4. Parametric Dictionaries for Sparsity • Integrates sparsity/CS with parameter estimation • Parametric dictionaries (PDs) collect observations for a set of values of parameter of interest (one per column) 
 • Simple signals (e.g., few localization targets) can be expressed via PDs using sparse coefficient vectors [Gorodntisky and Rao 1997] [Malioutov, Cetin, Willsky 2005] [Cevher, Duarte, Baraniuk 2008] [Cevher, Gurbuz, McClellan, Chellapa 2008][...]

  5. Parameter Estimation in Compressive Sensing • “Retrofitting” sparsity in CS for common parameter estimation problems (spectral estimation, localization, bearing y x estimation) results in several issues: dictionary coherence, basis/discretization mismatch, suboptimal sparsity… • Need new signal models that rely on continuous [Strohmer and Herman 2012] parameter space and are [Chi, Pezeshki, Scharf, Calderbank 2012] [Liao and Fannjiang 2012] widely applicable [Duarte and Baraniuk 2013]

  6. Parameter Estimation in Compressive Sensing • “Retrofitting” sparsity in CS for common parameter estimation problems (spectral estimation, localization, bearing y x estimation) results in several issues: dictionary coherence, basis/discretization mismatch, suboptimal sparsity… • Need new signal models that rely on continuous [Strohmer and Herman 2012] parameter space and are [Chi, Pezeshki, Scharf, Calderbank 2012] [Liao and Fannjiang 2012] widely applicable [Duarte and Baraniuk 2013]

  7. Parametric Signals and Basis Mismatch DTFT On DFT Grid Off DFT Grid [Herman and Strohmer 2010][Chi, Scharf, Pezeshki, and Calderbank 2011]

  8. Resolution in Frequency Domain • Redundant Fourier Frame T , c = 10 • Increased resolution allows for more scenes to be formulated as sparse in parametric dictionary

  9. Standard Sparse Signal Recovery Iterative Hard Thresholding Inputs: Output: • Measurement vector y • PD coefficient estimate • Measurement matrix • Sparsity K • I n i t i a l i z e : • W h i l e h a l t i n g c r i t e r i o n f a l s e , • • ( e s t i m a t e s i g n a l ) • ( o b t a i n b e s t s p a r s e a p p r o x . ) • ( c a l c u l a t e r e s i d u a l ) • R e t u r n e s t i m a t e [Blumensath and Davies 2009]

  10. Resolution in Frequency Domain • Redundant Fourier Frame , c = 10 Sparse signal 
 1 Coherence Dirichlet Kernel recovery 
 resembles 
 ω 0.5 matched 
 filtering : 0 0 0.02 0.04 0.06 0.08 0.1 0.12 ω ω ω

  11. Structured Frequency-Sparse Signals • A K -structured PD-sparse R N signal f consists of K PD elements that are mutually incoherent: if • If x is K -structured frequency-sparse, then there exists a K -sparse vector such that and the nonzeros in are spaced apart from each other ( band exclusion ). 1 ω 0.5 0 0 0.02 0.04 0.06 0.08 0.1 0.12 [Duarte and Baraniuk, 2012] [Fannjiang and Liao, 2012] ω ω ω

  12. Standard Sparse Signal Recovery Iterative Hard Thresholding Inputs: Output: • Measurement vector y • PD coefficient estimate • Measurement matrix • Sparsity K • I n i t i a l i z e : • W h i l e h a l t i n g c r i t e r i o n f a l s e , • • ( e s t i m a t e s i g n a l ) • ( o b t a i n b e s t s p a r s e a p p r o x . ) • ( c a l c u l a t e r e s i d u a l ) • R e t u r n e s t i m a t e [Blumensath and Davies 2009]

  13. Structured Sparse Signal Recovery Band-Excluding IHT Inputs: Output: • Measurement vector y • PD coefficient estimate • Measurement matrix • Structured sparse approx. algorithm • I n i t i a l i z e : • W h i l e h a l t i n g c r i t e r i o n f a l s e , • • ( e s t i m a t e s i g n a l ) • ( o b t a i n b a n d - e x c l u d i n g s p a r s e a p p r o x . ) • ( c a l c u l a t e r e s i d u a l ) • R e t u r n e s t i m a t e Can be applied to a variety of greedy algorithms 
 (CoSaMP, OMP, Subspace Pursuit, etc.) [Duarte and Baraniuk, 2012] [Fannjiang and Liao, 2012]

  14. Standard Sparse Signal Recovery Iterative Hard Thresholding Inputs: Output: • Measurement vector y • PD coefficient estimate • Measurement matrix • Sparsity K • I n i t i a l i z e : • W h i l e h a l t i n g c r i t e r i o n f a l s e , • • ( e s t i m a t e s i g n a l ) • ( o b t a i n b e s t s p a r s e a p p r o x . ) • ( c a l c u l a t e r e s i d u a l ) • R e t u r n e s t i m a t e [Blumensath and Davies 2009]

  15. Standard Sparse Signal Recovery Approximate Message Passing (AMP) Inputs: Output: • Measurement vector y • PD coefficient estimate • Measurement matrix • Sparsity K • I n i t i a l i z e : • W h i l e h a l t i n g c r i t e r i o n f a l s e , • • ( e s t i m a t e s i g n a l ) • ( o b t a i n b e s t s p a r s e a p p r o x . ) 
 • 
 ( O n s a g e r c o r r e c t i o n t e r m ) • R e t u r n e s t i m a t e Onsager correction term shapes b to resemble input signal x in Gaussian noise [Donoho, Maleki, and Montanari 2009]

  16. 
 
 
 The Power of 
 Approximate Message Passing • AMP: based on message passing algorithms • Onsager correction term “shapes” the distribution of the signal estimate b to resemble the original signal embedded in additive white Gaussian noise 
 [Donoho, Maleki, and Montanari 2009] : Divergence of hard thresholding 
 (sum of dimension-wise derivatives) • Intuition: hard thresholding provides optimal denoising for sparse signals embedded in additive white Gaussian noise [Metzler, Maleki, and Baraniuk 2014]

  17. 
 
 
 The Flexibility of AMP • AMP algorithm can be extended to arbitrary signal models by using optimal denoising algorithm for signals in additive Gaussian noise 
 [Donoho, Johnstone, and Montanari 2013] • Examples: hard thresholding for sparse signals; block thresholding for block-sparse signals; total variation denoisers for piecewise constant signals; image denoising algorithms 
 [Metzler, Maleki, and Baraniuk 2014] [Tan, Ma, and Baron 2015] • “Flexible” AMP requires formulation of new Onsager correction term specific to denoiser applied • Can also estimate numerically via Monte Carlo iterations 
 with ; average over multiple draws of b with small to obtain numerical estimate of expected value. [Metzler, Maleki, and Baraniuk 2014]

  18. 
 
 
 AMP with Parametric Denoisers • Statistical parameter estimation algorithms can be paired with generative signal models to provide “parametric denoisers” • Rich literature in statistical parameter estimation for a multitude of problems (including line spectral estimation) • Estimate Onsager correction term numerically: 
 ; average over multiple realizations of b with a small value of (e.g., ) to obtain numerical estimate of expected value. • In practice, 1-2 iterations often suffice. [Metzler, Maleki, and Baraniuk 2014]

  19. Parametric Denoising via Line Spectral Estimation Line Spectral Estimation-Based 
 Denoising Algorithm Inputs: • Noisy observation x • Target sparsity K Output: • Parameter estimates • Denoised signal MUSIC x Root MUSIC ESPRIT K PHD ...

  20. Prior Use of Denoisers as Sparse Approximation Algorithms IHT + Line Spectral Estimation Inputs: Output: • Measurement vector y • PD coefficient estimate • Measurement matrix • Structured sparse approx. algorithm • I n i t i a l i z e : • W h i l e h a l t i n g c r i t e r i o n f a l s e , • • ( e s t i m a t e s i g n a l ) • ( o b t a i n L S E p a r a m e t r i c s p a r s e a p p r o x . ) • ( c a l c u l a t e r e s i d u a l ) • R e t u r n e s t i m a t e [Duarte and Baraniuk, 2012]

Recommend


More recommend