comparison based choices
play

Comparison-based Choices Johan Ugander Management Science & - PowerPoint PPT Presentation

Comparison-based Choices Johan Ugander Management Science & Engineering Stanford University Joint work with: Jon Kleinberg (Cornell) Sendhil Mullainathan (Harvard) EC17 Boston June 28, 2017 P r e d i c t i n g d i s c


  1. Comparison-based Choices Johan Ugander Management Science & Engineering Stanford University Joint work with: Jon Kleinberg (Cornell) 
 Sendhil Mullainathan (Harvard) EC’17 Boston June 28, 2017

  2. P r e d i c t i n g d i s c r e t e c h o i c e s Classic problem: consumer preferences [Thurstone ’27, Luce ’59], • commuting [McFadden ’78], school choice [Kohn-Manski-Mundel ’76]

  3. P r e d i c t i n g o n l i n e d i s c r e t e c h o i c e s

  4. P r e d i c t i n g o n l i n e d i s c r e t e c h o i c e s How well can we learn/predict “choice set effects”? 
 a.k.a. violations of the “independence of irrelevant alternatives” (IIA) [Sheffet-Mishra-Ieong ICML 2012, Yin et al. WSDM 2014] •

  5. C h o i c e s e t e f f e c t s • Bias towards moderation, compromise effect [Simonson 1989, Simonson-Tversky 1992, 
 • Kamenica 2008, Trueblood 2013]

  6. C h o i c e s e t e f f e c t s • Bias towards moderation, compromise effect megapixels weight [Simonson 1989, Simonson-Tversky 1992, 
 • Kamenica 2008, Trueblood 2013]

  7. C h o i c e s e t e f f e c t s • Bias towards moderation, compromise effect megapixels weight [Simonson 1989, Simonson-Tversky 1992, 
 • Kamenica 2008, Trueblood 2013]

  8. C h o i c e s e t e f f e c t s • Bias towards moderation, compromise effect megapixels weight • Similarity aversion megapixels [Simonson 1989, Simonson-Tversky 1992, 
 • Kamenica 2008, Trueblood 2013] weight

  9. C h o i c e s e t e f f e c t s • Bias towards moderation, compromise effect megapixels weight • Similarity aversion megapixels [Simonson 1989, Simonson-Tversky 1992, 
 • Kamenica 2008, Trueblood 2013] weight

  10. C h o i c e s e t e f f e c t s • Bias towards moderation, compromise effect Ordinal comparisons megapixels weight • Similarity aversion Similarity requires megapixels “distance” [Simonson 1989, Simonson-Tversky 1992, 
 • Kamenica 2008, Trueblood 2013] weight

  11. T h e p r e s e n t w o r k • Focused on comparison-based functions . • Investigate asymptotic query complexity : if an agent makes comparison-based choices, how hard to learn their choice function? • Assume population is not learning, meaning choice set effects 
 are not “transient irrationality”. • Several query frameworks: • Active queries vs. passive stream of queries • Fixed choice function vs. mixture of choice functions

  12. T h e p r e s e n t w o r k • Focused on comparison-based functions . • Investigate asymptotic query complexity : if an agent makes comparison-based choices, how hard to learn their choice function? • Assume population is not learning, meaning choice set effects 
 are not “transient irrationality”. • Several query frameworks: • Active queries vs. passive stream of queries • Fixed choice function vs. mixture of choice functions • Basic takeaway: comparison-based functions in one dimension 
 (still rich!) are no harder to learn than binary comparisons (sorting).

  13. 
 
 C o m p a r i s o n - b a s e d c h o i c e f u n c t i o n s • Definition: Given a set of alternatives U , a choice function f maps 
 every non-empty S ⊆ U to an element u ∈ S. • Example: 
 S u U: f( ) =

  14. 
 
 C o m p a r i s o n - b a s e d c h o i c e f u n c t i o n s • Definition: Given a set of alternatives U , a choice function f maps 
 every non-empty S ⊆ U to an element u ∈ S. • Example: 
 S u U: f( ) = • Embedding items: • Consider U as embedded in attribute space, h:U->X • For X = ℝ 1 , h(u i ) are utilities: b d a c e

  15. 
 
 C o m p a r i s o n - b a s e d c h o i c e f u n c t i o n s • Definition: Given a set of alternatives U , a choice function f maps 
 every non-empty S ⊆ U to an element u ∈ S. • Example: 
 S u U: f( ) = • Embedding items: • Consider U as embedded in attribute space, h:U->X • For X = ℝ 1 , h(u i ) are utilities: b d a c e • Comparison-based functions: • Definition: Choice functions that can be written as comparisons (<,>,=) over {h(u i ): u i ∈ S} .

  16. C o m p a r i s o n - b a s e d c h o i c e f u n c t i o n s • In one dimension, comparison-based functions are all 
 position-selection functions : select ℓ -of-k. • Example: k=4, ℓ =2 c d a b f ( S ) = b b d a c

  17. C o m p a r i s o n - b a s e d c h o i c e f u n c t i o n s • In one dimension, comparison-based functions are all 
 position-selection functions : select ℓ -of-k. • Example: k=4, ℓ =2 c d a b f ( S ) = b b d a c • Selecting 1-of-2 is sorting. • Focus on k -sets S with fixed k .

  18. C o m p a r i s o n - b a s e d c h o i c e f u n c t i o n s • In one dimension, comparison-based functions are all 
 position-selection functions : select ℓ -of-k. • Example: k=4, ℓ =2 c d d a b b e c f ( S ) = b f ( S ) = c b d a c e • Selecting 1-of-2 is sorting. • Focus on k -sets S with fixed k . Position-selection functions exhibit choice set effects. •

  19. Q u e r y c o m p l e x i t y • Observe sequence of (choice set, choice) pairs (S, f(S)). • How many do we need to observe to report f(S) for (almost) all S ?

  20. Q u e r y c o m p l e x i t y • Observe sequence of (choice set, choice) pairs (S, f(S)). • How many do we need to observe to report f(S) for (almost) all S ? • Active vs. passive queries • Active: can choose what k-set S to query next, sequentially. • Passive: Stream of random k-sets S . • Fixed vs. mixed choice functions • Fixed: all queries of same -of-k function. ` • Mixed: mixture of different positions selected. ( π 1 , ..., π k )

  21. Q u e r y c o m p l e x i t y , b i n a r y c h o i c e s • How does sorting ( 1-of-2 ) fit in this query complexity framework? • Mixed binary choice functions map to ( p,1-p ) noisy sorting. Fixed Mixed Sorting with 
 Sorting from noisy comparisons 
 Active comparisons (Feige et al. 1994) 
 O(n log n) O(n log n) 
 Sorting in one round 
 (Alon-Azar 1988) 
 Passive ? O(n log n loglog n) 


  22. 
 Q u e r y c o m p l e x i t y , k - s e t c h o i c e s • Sorting results translated to position-selection functions: Fixed Mixed Adaptation of two-phase Two-phase algorithm 
 Active algorithm 
 O(n log n) O(n log n) 
 Streaming model 
 Passive ? O(n k-1 log n loglog n)

  23. Q u e r y c o m p l e x i t y : a c t i v e , fi x e d • Phase 1: find “ineligible alternatives” via a discard algorithm f ( S ) = b c d a b = ineligible alternatives S ∗ = { } S − 2 = { } k − ` item(s) ` − 1 item(s) b d a c

  24. Q u e r y c o m p l e x i t y : a c t i v e , fi x e d • Phase 1: find “ineligible alternatives” via a discard algorithm f ( S ) = b c d a b = ineligible alternatives S ∗ = { } S − 2 = { } k − ` item(s) ` − 1 item(s) b d a c • Phase 2: Pad a choice set with ineligible alternatives, do binary sort.

  25. Q u e r y c o m p l e x i t y : a c t i v e , fi x e d • Phase 1: find “ineligible alternatives” via a discard algorithm f ( S ) = b c d a b = ineligible alternatives S ∗ = { } S − 2 = { } k − ` item(s) ` − 1 item(s) b d a c • Phase 2: Pad a choice set with ineligible alternatives, do binary sort. • O(n) queries in discard algorithm, O(n log n) queries to sort. • Only recovers order, not orientation: don’t know if “padded sort” is a “max” or a “min”, but not needed to recover f(S) for ever S . • Algorithm doesn’t depend on what position is being selected for.

  26. Q u e r y c o m p l e x i t y : a c t i v e , m i x e d • Instead of -of-k, mixture of positions with probabilities , 
 ( π 1 , ..., π k ) ` constant separation. c d a b f ( S ) = b b d a c • 0: Estimate probabilities of each position by studying a k+1 -set closely. • 1: Run discard phase O(log n) times, find “max-ineligible alternatives” • 2: Can then pad choice set and run a “noisy max” with (max, min, fail) outcomes instead of (max, min) outcomes as in (Feige et al. 1994).

Recommend


More recommend