comparative protein structure modeling of genes and
play

Comparative protein structure modeling of genes and genomes Marc A. - PowerPoint PPT Presentation

Comparative protein structure modeling of genes and genomes Marc A. Marti-Renom Department of Biopharmaceutical Sciences University of California, San Francisco Comparative protein structure modeling of genes and genomes Marc A.


  1. Comparative protein structure modeling of genes and genomes Marc A. Marti-Renom Department of Biopharmaceutical Sciences University of California, San Francisco

  2. Comparative protein structure modeling of genes and genomes Marc A. Marti-Renomics Department of Biopharmaceutical Sciences University of California, San Francisco

  3. Why protein structure prediction? Y 2003 Y 2005 Sequences 1,000,000 millions Structures 18,000 50,000

  4. Why protein structure prediction? Theory Y 2003 Sequences 1,000,000 Structures 18,000 Experiment

  5. Why protein structure prediction? Theory Y 2003 Sequences 1,000,000 400,000 Structures 18,000 Experiment http://salilab.org/ modbase

  6. Why protein structure prediction? Theory Y 2003 Sequences 1,000,000 400,000 Structures 18,000 Experiment http://salilab.org/ modbase

  7. Principles of Protein Structure

  8. Principles of Protein Structure GFCHIKAYTRLIMVG… Folding Ab initio prediction

  9. Principles of Protein Structure GFCHIKAYTRLIMVG… Desulfovibrio vulgaris Anacystis nidulans Condrus crispus Anabaena 7120 Folding Evolution Ab initio prediction Threading Comparative Modeling

  10. Comparative Modeling by Satisfaction of Spatial Restraints (M ODELLER) 3D GKITFYERGFQGHCYESDC-NLQP… SEQ GKITFYERG---RCYESDCPNLQP… A. Š ali & T. Blundell. J. Mol. Biol. 234 , 779, 1993. http://salilab.org/modeller J.P. Overington & A. Š ali. Prot. Sci . 3 , 1582, 1994. A. Fiser, R. Do & A. Š ali. Prot Sci . 9 , 1753, 2000.

  11. Comparative Modeling by Satisfaction of Spatial Restraints (M ODELLER) 3D GKITFYERGFQGHCYESDC-NLQP… SEQ GKITFYERG---RCYESDCPNLQP… 1. Extract spatial restraints A. Š ali & T. Blundell. J. Mol. Biol. 234 , 779, 1993. http://salilab.org/modeller J.P. Overington & A. Š ali. Prot. Sci . 3 , 1582, 1994. A. Fiser, R. Do & A. Š ali. Prot Sci . 9 , 1753, 2000.

  12. Comparative Modeling by Satisfaction of Spatial Restraints (M ODELLER) 3D GKITFYERGFQGHCYESDC-NLQP… SEQ GKITFYERG---RCYESDCPNLQP… 1. Extract spatial restraints 2. Satisfy spatial restraints F ( R ) = Π p i (f i / I) i A. Š ali & T. Blundell. J. Mol. Biol. 234 , 779, 1993. http://salilab.org/modeller J.P. Overington & A. Š ali. Prot. Sci . 3 , 1582, 1994. A. Fiser, R. Do & A. Š ali. Prot Sci . 9 , 1753, 2000.

  13. Steps in Comparative Protein Structure Modeling START TARGET ASILPKRLFGNCEQTSDEGLK IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK A. Š ali, Curr. Opin. Biotech. 6, 437, 1995. R. Sánchez & A. Š ali, Curr. Opin. Str. Biol. 7, 206, 1997. M. A. Martí-Renom et al . Ann. Rev. Biophys. Biomolec. Struct ., 29, 291, 2000.

  14. Steps in Comparative Protein Structure Modeling START TARGET TEMPLATE ASILPKRLFGNCEQTSDEGLK Template Search IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK A. Š ali, Curr. Opin. Biotech. 6, 437, 1995. R. Sánchez & A. Š ali, Curr. Opin. Str. Biol. 7, 206, 1997. M. A. Martí-Renom et al . Ann. Rev. Biophys. Biomolec. Struct ., 29, 291, 2000.

  15. Steps in Comparative Protein Structure Modeling START TARGET TEMPLATE ASILPKRLFGNCEQTSDEGLK Template Search IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK Target – Template ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE Alignment A. Š ali, Curr. Opin. Biotech. 6, 437, 1995. R. Sánchez & A. Š ali, Curr. Opin. Str. Biol. 7, 206, 1997. M. A. Martí-Renom et al . Ann. Rev. Biophys. Biomolec. Struct ., 29, 291, 2000.

  16. Steps in Comparative Protein Structure Modeling START TARGET TEMPLATE ASILPKRLFGNCEQTSDEGLK Template Search IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK Target – Template ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE Alignment Model Building A. Š ali, Curr. Opin. Biotech. 6, 437, 1995. R. Sánchez & A. Š ali, Curr. Opin. Str. Biol. 7, 206, 1997. M. A. Martí-Renom et al . Ann. Rev. Biophys. Biomolec. Struct ., 29, 291, 2000.

  17. Steps in Comparative Protein Structure Modeling START TARGET TEMPLATE ASILPKRLFGNCEQTSDEGLK Template Search IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK Target – Template ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE Alignment Model Building Model Evaluation OK? Yes END A. Š ali, Curr. Opin. Biotech. 6, 437, 1995. R. Sánchez & A. Š ali, Curr. Opin. Str. Biol. 7, 206, 1997. M. A. Martí-Renom et al . Ann. Rev. Biophys. Biomolec. Struct ., 29, 291, 2000.

  18. Steps in Comparative Protein Structure Modeling START TARGET TEMPLATE ASILPKRLFGNCEQTSDEGLK Template Search IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK Target – Template ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE Alignment Model Building Model Evaluation No OK? Yes END A. Š ali, Curr. Opin. Biotech. 6, 437, 1995. R. Sánchez & A. Š ali, Curr. Opin. Str. Biol. 7, 206, 1997. M. A. Martí-Renom et al . Ann. Rev. Biophys. Biomolec. Struct ., 29, 291, 2000.

  19. Model Accuracy as a Function of Target-Template Sequence Identity

  20. Typical Errors in Comparative Models

  21. Typical Errors in Comparative Models Incorrect template MODEL X-RAY TEMPLATE

  22. Typical Errors in Comparative Models Incorrect template Misalignment MODEL X-RAY TEMPLATE

  23. Typical Errors in Comparative Models Incorrect template Misalignment MODEL X-RAY TEMPLATE Region without a template

  24. Typical Errors in Comparative Models Incorrect template Misalignment MODEL X-RAY TEMPLATE Region without a Distortion in correctly template aligned regions

  25. Typical Errors in Comparative Models Incorrect template Misalignment MODEL X-RAY TEMPLATE Region without a Distortion in correctly Sidechain packing template aligned regions

  26. Model Accuracy Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29 , 291-325, 2000. HIGH ACCURACY MEDIUM ACCURACY LOW ACCURACY NM23 CRABP EDN Seq id 77% Seq id 41% Seq id 33% X-RAY

  27. Model Accuracy Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29 , 291-325, 2000. HIGH ACCURACY MEDIUM ACCURACY LOW ACCURACY NM23 CRABP EDN Seq id 77% Seq id 41% Seq id 33% C α equiv 147/148 RMSD 0.41Å Sidechains Core backbone Loops X-RAY / MODEL

  28. Model Accuracy Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29 , 291-325, 2000. HIGH ACCURACY MEDIUM ACCURACY LOW ACCURACY NM23 CRABP EDN Seq id 77% Seq id 41% Seq id 33% C α equiv 147/148 C α equiv 122/137 RMSD 0.41Å RMSD 1.34Å Sidechains Sidechains Core backbone Core backbone Loops Loops Alignment X-RAY / MODEL

  29. Model Accuracy Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29 , 291-325, 2000. HIGH ACCURACY MEDIUM ACCURACY LOW ACCURACY NM23 CRABP EDN Seq id 77% Seq id 41% Seq id 33% C α equiv 147/148 C α equiv 90/134 C α equiv 122/137 RMSD 0.41Å RMSD 1.17Å RMSD 1.34Å Sidechains Sidechains Sidechains Core backbone Core backbone Core backbone Loops Loops Loops Alignment Alignment Fold assignment X-RAY / MODEL

  30. “Biological” significance of modeling errors NMR – X-RAY Erabutoxin 3ebx Erabutoxin 1era NMR Ileal lipid-binding protein 1eal X-RAY Interleukin 1 β 41bi (2.9Å) Interleukin 1 β 2mib (2.8Å)

  31. “Biological” significance of modeling errors NMR – X-RAY Erabutoxin 3ebx Erabutoxin 1era NMR Ileal lipid-binding protein 1eal CRABPII 1opbB FABP 1ftpA ALBP 1lib 40% seq. id. X-RAY Interleukin 1 β 41bi (2.9Å) Interleukin 1 β 2mib (2.8Å)

  32. Applications of Comparative Models D. Baker & A. Sali. Science 294, 93, 2001 . A. Sali & J. Kuriyan. TIBS 22 , M20, 1999.

  33. Sali. Nat. Struct. Biol . 5 , 1029, 1998. Structural Genomics Sali et al. Nat. Struct. Biol ., 7 , 986, 2000. Sali. Nat. Struct. Biol. 7 , 484, 2001. Baker & Sali. Science 294, 93, 2001 . Characterize most protein sequences based on related known structures. 11/11/02

  34. Sali. Nat. Struct. Biol . 5 , 1029, 1998. Structural Genomics Sali et al. Nat. Struct. Biol ., 7 , 986, 2000. Sali. Nat. Struct. Biol. 7 , 484, 2001. Baker & Sali. Science 294, 93, 2001 . Characterize most protein sequences based on related known structures. 11/11/02

  35. Sali. Nat. Struct. Biol . 5 , 1029, 1998. Structural Genomics Sali et al. Nat. Struct. Biol ., 7 , 986, 2000. Sali. Nat. Struct. Biol. 7 , 484, 2001. Baker & Sali. Science 294, 93, 2001 . Characterize most protein sequences based on related known Characterize most protein sequences based on related known structures. structures. 11/11/02

  36. Sali. Nat. Struct. Biol . 5 , 1029, 1998. Structural Genomics Sali et al. Nat. Struct. Biol ., 7 , 986, 2000. Sali. Nat. Struct. Biol. 7 , 484, 2001. Baker & Sali. Science 294, 93, 2001 . Characterize most protein sequences based on related known Characterize most protein sequences based on related known structures. structures. 11/11/02

  37. Sali. Nat. Struct. Biol . 5 , 1029, 1998. Structural Genomics Sali et al. Nat. Struct. Biol ., 7 , 986, 2000. Sali. Nat. Struct. Biol. 7 , 484, 2001. Baker & Sali. Science 294, 93, 2001 . Characterize most protein sequences based on related known Characterize most protein sequences based on related known structures. structures. The number of “families” is much smaller than the number of proteins. Any one of the members of a family is fine. 11/11/02

Recommend


More recommend