combinatorial reciprocity theorems
play

Combinatorial Reciprocity Theorems Matthias Beck based on joint - PowerPoint PPT Presentation

Combinatorial Reciprocity Theorems Matthias Beck based on joint work with San Francisco State University Raman Sanyal math.sfsu.edu/beck Universit at Frankfurt Thomas Zaslavsky JCCA 2018 Sendai Binghamton University The Theme


  1. Combinatorial Reciprocity Theorems Matthias Beck based on joint work with San Francisco State University Raman Sanyal math.sfsu.edu/beck Universit¨ at Frankfurt Thomas Zaslavsky JCCA 2018 Sendai Binghamton University

  2. The Theme Combinatorics counting function depending on k ∈ Z > 0 polynomial p ( k ) What is p (0) ? p ( − 1) ? p ( − 2) ? Combinatorial Reciprocity Theorems Matthias Beck 2

  3. The Theme Combinatorics counting function depending on k ∈ Z > 0 polynomial p ( k ) What is p (0) ? p ( − 1) ? p ( − 2) ? Two-for-one charm of combinatorial reciprocity theorems ◮ “Big picture” motivation: understand/classify these polynomials ◮ Combinatorial Reciprocity Theorems Matthias Beck 2

  4. Chromatic Polynomials G = ( V, E ) — graph (without loops) Proper k -coloring of G — x ∈ [ k ] V such that x i � = x j if ij ∈ E χ G ( k ) := # ( proper k -colorings of G ) Example: • ✡ ❏ ✡ ❏ ✡ ❏ χ K 3 ( k ) = k ( k − 1)( k − 2) ✡ ❏ ✡ ❏ ✡ ❏ ✡ ❏ • • ✡ ❏ Combinatorial Reciprocity Theorems Matthias Beck 3

  5. Chromatic Polynomials • ✡ ❏ ✡ ❏ ✡ ❏ χ K 3 ( k ) = k ( k − 1)( k − 2) ✡ ❏ ✡ ❏ ✡ ❏ ✡ ❏ • • ✡ ❏ Theorem (Birkhoff 1912, Whitney 1932) χ G ( k ) is a polynomial in k . | χ K 3 ( − 1) | = 6 counts the number of acyclic orientations of K 3 . Theorem (Stanley 1973) ( − 1) | V | χ G ( − k ) equals the number of pairs ( α, x ) consisting of an acyclic orientation α of G and a compatible k -coloring x . In particular, ( − 1) | V | χ G ( − 1) equals the number of acyclic orientations of G . Combinatorial Reciprocity Theorems Matthias Beck 3

  6. Order Polynomials (Π , � ) — finite poset φ ∈ [ k ] Π : a � b = � � Ω Π ( k ) := # ⇒ φ ( a ) ≤ φ ( b ) φ ∈ [ k ] Π : a ≺ b = Ω ◦ � � Π ( k ) := # ⇒ φ ( a ) < φ ( b ) � − k = ( − 1) d � k + d − 1 � k → Ω ◦ � � � Example: Π = [ d ] − Π ( k ) = and d d d Combinatorial Reciprocity Theorems Matthias Beck 4

  7. Order Polynomials (Π , � ) — finite poset φ ∈ [ k ] Π : a � b = � � Ω Π ( k ) := # ⇒ φ ( a ) ≤ φ ( b ) φ ∈ [ k ] Π : a ≺ b = Ω ◦ � � Π ( k ) := # ⇒ φ ( a ) < φ ( b ) � − k = ( − 1) d � k + d − 1 � k → Ω ◦ � � � Example: Π = [ d ] − Π ( k ) = and d d d Theorem (Stanley 1970) Ω Π ( k ) and Ω ◦ Π ( k ) are Π ( − k ) = ( − 1) | Π | Ω Π ( k ) . polynomials related via Ω ◦ Combinatorial Reciprocity Theorems Matthias Beck 4

  8. Order Polynomials h ( ◦ ) Π ( z ) Π ( k ) z k = Ω ( ◦ ) � (1 − z ) | Π | +1 (Π , � ) — finite poset k ≥ 0 φ ∈ [ k ] Π : a � b = � � Ω Π ( k ) := # ⇒ φ ( a ) ≤ φ ( b ) φ ∈ [ k ] Π : a ≺ b = Ω ◦ � � Π ( k ) := # ⇒ φ ( a ) < φ ( b ) � − k = ( − 1) d � k + d − 1 � k → Ω ◦ � � � Example: Π = [ d ] − Π ( k ) = and d d d Theorem (Stanley 1970) Ω Π ( k ) and Ω ◦ Π ( k ) are Π ( − k ) = ( − 1) | Π | Ω Π ( k ) . polynomials related via Ω ◦ Equivalently, z | Π | +1 h ◦ Π ( 1 z ) = h Π ( z ) . Combinatorial Reciprocity Theorems Matthias Beck 4

  9. Eulerian Simplicial Complexes Γ — simplicial complex (collection of subsets of a finite set, closed under taking subsets) Γ is Eulerian if it is pure and every interval has as many elements of even rank as of odd rank f j := # ( j + 1) -subsets = # faces of dimension j d +1 f j − 1 z j (1 − z ) d +1 − j � h ( z ) := j =0 Theorem (Everyone 19xy) If Γ is Eulerian then z d +1 h ( 1 z ) = h ( z ) . Key example (Dehn–Sommerville): Γ = boundary complex of a simplicial polytope Combinatorial Reciprocity Theorems Matthias Beck 5

  10. Ehrhart Polynomials Lattice polytope P ⊂ R d – convex hull of finitely points in Z d k P ∩ Z d � � For k ∈ Z > 0 let ehr P ( k ) := # x 1 = x 2 x 2 Example: x 2 = 6 ∆ = conv { (0 , 0) , (0 , 1) , (1 , 1) } ( x, y ) ∈ R 2 : 0 ≤ x 1 ≤ x 2 ≤ 1 � � = � k +2 = 1 � ehr ∆ ( k ) = 2 ( k + 1)( k + 2) 2 x 1 � k − 1 � ehr ∆ ( − k ) = = ehr ∆ ◦ ( k ) 2 Combinatorial Reciprocity Theorems Matthias Beck 6

  11. Ehrhart Polynomials Lattice polytope P ⊂ R d – convex hull of finitely points in Z d k P ∩ Z d � � For k ∈ Z > 0 let ehr P ( k ) := # x 1 = x 2 x 2 Example: x 2 = 6 ∆ = conv { (0 , 0) , (0 , 1) , (1 , 1) } ( x, y ) ∈ R 2 : 0 ≤ x 1 ≤ x 2 ≤ 1 � � = � k +2 = 1 � ehr ∆ ( k ) = 2 ( k + 1)( k + 2) 2 x 1 � k − 1 � ehr ∆ ( − k ) = = ehr ∆ ◦ ( k ) 2 For example, the evaluations ehr ∆ ( − 1) = ehr ∆ ( − 2) = 0 point to the fact that neither ∆ nor 2∆ contain any interior lattice points. Combinatorial Reciprocity Theorems Matthias Beck 6

  12. Ehrhart Polynomials Lattice polytope P ⊂ R d – convex hull of finitely points in Z d k P ∩ Z d � � For k ∈ Z > 0 let ehr P ( k ) := # Theorem (Ehrhart 1962) ehr P ( k ) is a polynomial in k . Theorem (Macdonald 1971) ( − 1) dim P ehr P ( − k ) enumerates the interior lattice points in k P . Combinatorial Reciprocity Theorems Matthias Beck 7

  13. Ehrhart Polynomials Lattice polytope P ⊂ R d – convex hull of finitely points in Z d k P ∩ Z d � � For k ∈ Z > 0 let ehr P ( k ) := # Theorem (Ehrhart 1962) ehr P ( k ) is a polynomial in k . h ∗ P ( z ) ehr P ( k ) z k = � Ehr P ( z ) := 1 + (1 − z ) dim( P )+1 k> 0 Theorem (Macdonald 1971) ( − 1) dim P ehr P ( − k ) enumerates the interior lattice points in k P . z dim( P ) h ∗ P ( 1 z ) = h ∗ P ◦ ( z ) Combinatorial Reciprocity Theorems Matthias Beck 7

  14. Combinatorial Reciprocity Common theme: a combinatorial function, which is a priori defined on the positive integers, (1) can be algebraically extended beyond the positive integers (e.g., because it is a polynomial), and (2) has (possibly quite different) meaning when evaluated at negative integers. Generating-function version: evaluate at reciprocals. Combinatorial Reciprocity Theorems Matthias Beck 8

  15. Ehrhart − → Order Polynomials (Π , � ) — finite poset φ ∈ [0 , 1] Π : a � b = � � Order polytope O Π := ⇒ φ ( a ) ≤ φ ( b ) φ ∈ [ k ] Π : a � b = � � Ω Π ( k ) = # ⇒ φ ( a ) ≤ φ ( b ) = ehr O Π ( k − 1) φ ∈ [ k ] Π : a ≺ b = Ω ◦ � � Π ( k ) = # ⇒ φ ( a ) < φ ( b ) = ehr O ◦ Π ( k + 1) P ( − k ) = ( − 1) dim P ehr P ( k ) implies Ω ◦ Π ( − k ) = ( − 1) | Π | Ω Π ( k ) and so ehr ◦ Combinatorial Reciprocity Theorems Matthias Beck 9

  16. Order − → Chromatic Polynomials � Ω ◦ χ G ( k ) = # ( proper k -colorings of G ) = Π ( k ) Π acyclic ( − 1) | V | χ G ( − k ) = ( − 1) | Π | Ω ◦ � � Π ( − k ) = Ω Π ( k ) Π acyclic Π acyclic k + 1 K 2 k + 1 x 1 = x 2 Combinatorial Reciprocity Theorems Matthias Beck 10

  17. Chain Partitions (Π , � ) — finite graded poset with ˆ 0 and ˆ 1 φ : Π \ { ˆ 0 , ˆ 1 } → Z > 0 order preserving (Π , φ ) -chain partition of n ∈ Z > 0 : n = φ ( c m ) + φ ( c m − 1 ) + · · · + φ ( c 1 ) for some multichain ˆ 1 ≻ c m � c m − 1 � · · · � c 1 ≻ ˆ 0 � cp Π ,φ ( k ) z k cp Π ,φ ( k ) := # (chain partitions of k ) CP Π ,φ ( z ) := 1+ k> 0 Combinatorial Reciprocity Theorems Matthias Beck 11

  18. Chain Partitions (Π , � ) — finite graded poset with ˆ 0 and ˆ 1 φ : Π \ { ˆ 0 , ˆ 1 } → Z > 0 order preserving (Π , φ ) -chain partition of n ∈ Z > 0 : n = φ ( c m ) + φ ( c m − 1 ) + · · · + φ ( c 1 ) for some multichain ˆ 1 ≻ c m � c m − 1 � · · · � c 1 ≻ ˆ 0 � cp Π ,φ ( k ) z k cp Π ,φ ( k ) := # (chain partitions of k ) CP Π ,φ ( z ) := 1+ k> 0 Example: A = { a 1 < a 2 < · · · < a d } ⊂ Z > 0 Π = [ d ] φ ( j ) := a j − → cp Π ,φ ( k ) is the restricted partition function with parts in A Combinatorial Reciprocity Theorems Matthias Beck 11

  19. Chain Partitions (Π , � ) — finite graded poset with ˆ 0 and ˆ 1 φ : Π \ { ˆ 0 , ˆ 1 } → Z > 0 order preserving (Π , φ ) -chain partition of n ∈ Z > 0 : n = φ ( c m ) + φ ( c m − 1 ) + · · · + φ ( c 1 ) for some multichain ˆ 1 ≻ c m � c m − 1 � · · · � c 1 ≻ ˆ 0 � cp Π ,φ ( k ) z k cp Π ,φ ( k ) := # (chain partitions of k ) CP Π ,φ ( z ) := 1+ k> 0 φ is ranked if rank( a ) = rank( b ) = ⇒ φ ( a ) = φ ( b ) Theorem If Π is Eulerian then � distinct ranks CP Π ,φ ( z ) � 1 � ( − 1) rank(Π) CP Π ,φ = z z Combinatorial Reciprocity Theorems Matthias Beck 11

  20. Chain Partitions for Simplicial Complexes Π = Γ ∪ { ˆ 1 } for a d -simplicial complex Γ with ground set V φ ( σ ) = rank( σ ) = | σ | (Π , φ ) -chain partition of n ∈ Z > 0 : n = φ ( c m ) + φ ( c m − 1 ) + · · · + φ ( c 1 ) for some multichain ˆ 1 ≻ c m � c m − 1 � · · · � c 1 ≻ ˆ 0 d +1 � k � � cp Π ,φ ( k ) := # (chain partitions of k ) = f j − 1 j j =0 Canonical geometric realization of Γ in R V : � � R [Γ] := conv { e v : v ∈ σ } : σ ∈ Γ Combinatorial Reciprocity Theorems Matthias Beck 12

Recommend


More recommend