combinatorial reciprocity theorems
play

Combinatorial Reciprocity Theorems Matthias Beck Based on joint - PowerPoint PPT Presentation

Combinatorial Reciprocity Theorems Matthias Beck Based on joint work with San Francisco State University Thomas Zaslavsky math.sfsu.edu/beck Binghamton University (SUNY) In mathematics you dont understand things. You just get used to


  1. Combinatorial Reciprocity Theorems Matthias Beck Based on joint work with San Francisco State University Thomas Zaslavsky math.sfsu.edu/beck Binghamton University (SUNY)

  2. “In mathematics you don’t understand things. You just get used to them.” John von Neumann (1903–1957) Combinatorial Reciprocity Theorems Matthias Beck 2

  3. The Theme Combinatorics counting function depending on k ∈ Z > 0 polynomial p ( k ) What is p (0) ? p ( − 1) ? p ( − 2) ? Combinatorial Reciprocity Theorems Matthias Beck 3

  4. The Theme Combinatorics counting function depending on k ∈ Z > 0 polynomial p ( k ) What is p (0) ? p ( − 1) ? p ( − 2) ? Two-for-one charm of combinatorial reciprocity theorems ◮ “Big picture” motivation: understand/classify these polynomials ◮ Combinatorial Reciprocity Theorems Matthias Beck 3

  5. Chromatic Polynomials of Graphs G = ( V, E ) — graph (without loops) k -coloring of G — mapping x ∈ { 1 , 2 , . . . , k } V Combinatorial Reciprocity Theorems Matthias Beck 4

  6. Chromatic Polynomials of Graphs G = ( V, E ) — graph (without loops) Proper k -coloring of G — x ∈ { 1 , 2 , . . . , k } V such that x i � = x j if ij ∈ E χ G ( k ) := # ( proper k -colorings of G ) Example: • ✡ ❏ ✡ ❏ ✡ ❏ ✡ ❏ ✡ ❏ ✡ ❏ ✡ ❏ • • ✡ ❏ Combinatorial Reciprocity Theorems Matthias Beck 4

  7. Chromatic Polynomials of Graphs G = ( V, E ) — graph (without loops) Proper k -coloring of G — x ∈ { 1 , 2 , . . . , k } V such that x i � = x j if ij ∈ E χ G ( k ) := # ( proper k -colorings of G ) Example: • ✡ ❏ ✡ ❏ ✡ ❏ χ K 3 ( k ) = k · · · ✡ ❏ ✡ ❏ ✡ ❏ ✡ ❏ • • ✡ ❏ Combinatorial Reciprocity Theorems Matthias Beck 4

  8. Chromatic Polynomials of Graphs G = ( V, E ) — graph (without loops) Proper k -coloring of G — x ∈ { 1 , 2 , . . . , k } V such that x i � = x j if ij ∈ E χ G ( k ) := # ( proper k -colorings of G ) Example: • ✡ ❏ ✡ ❏ ✡ ❏ χ K 3 ( k ) = k ( k − 1) · · · ✡ ❏ ✡ ❏ ✡ ❏ ✡ ❏ • • ✡ ❏ Combinatorial Reciprocity Theorems Matthias Beck 4

  9. Chromatic Polynomials of Graphs G = ( V, E ) — graph (without loops) Proper k -coloring of G — x ∈ { 1 , 2 , . . . , k } V such that x i � = x j if ij ∈ E χ G ( k ) := # ( proper k -colorings of G ) Example: • ✡ ❏ ✡ ❏ ✡ ❏ χ K 3 ( k ) = k ( k − 1)( k − 2) ✡ ❏ ✡ ❏ ✡ ❏ ✡ ❏ • • ✡ ❏ Combinatorial Reciprocity Theorems Matthias Beck 4

  10. Chromatic Polynomials of Graphs • ✡ ❏ ✡ ❏ ✡ ❏ χ K 3 ( k ) = k ( k − 1)( k − 2) ✡ ❏ ✡ ❏ ✡ ❏ ✡ ❏ • • ✡ ❏ Theorem (Birkhoff 1912, Whitney 1932) χ G ( k ) is a polynomial in k . Combinatorial Reciprocity Theorems Matthias Beck 5

  11. Chromatic Polynomials of Graphs • ✡ ❏ ✡ ❏ ✡ ❏ χ K 3 ( k ) = k ( k − 1)( k − 2) ✡ ❏ ✡ ❏ ✡ ❏ ✡ ❏ • • ✡ ❏ Theorem (Birkhoff 1912, Whitney 1932) χ G ( k ) is a polynomial in k . | χ K 3 ( − 1) | = 6 counts the number of acyclic orientations of K 3 . Combinatorial Reciprocity Theorems Matthias Beck 5

  12. Chromatic Polynomials of Graphs • ✡ ❏ ✡ ❏ ✡ ❏ χ K 3 ( k ) = k ( k − 1)( k − 2) ✡ ❏ ✡ ❏ ✡ ❏ ✡ ❏ • • ✡ ❏ Theorem (Birkhoff 1912, Whitney 1932) χ G ( k ) is a polynomial in k . | χ K 3 ( − 1) | = 6 counts the number of acyclic orientations of K 3 . Theorem (Stanley 1973) ( − 1) | V | χ G ( − k ) equals the number of pairs ( α, x ) consisting of an acyclic orientation α of G and a compatible k -coloring x . In particular, ( − 1) | V | χ G ( − 1) equals the number of acyclic orientations of G . Combinatorial Reciprocity Theorems Matthias Beck 5

  13. If you get bored. . . Show that the coefficients of χ G alternate in sign. [old news] ◮ Show that the absolute values of the coefficients form a unimodal ◮ sequence. [J. Huh, arXiv:1008.4749 ] Show that χ G (4) > 0 for any planar graph G . [impressive with or ◮ without a computer] Show that χ G has no real root ≥ 4 . [open] ◮ Classify chromatic polynomials. [wide open] ◮ Combinatorial Reciprocity Theorems Matthias Beck 6

  14. Hyperplane Arrangements H ⊂ R d — arrangement of affine hyperplanes L ( H ) — all nonempty intersections of hyperplanes in H  if F = R d 1   M¨ obius function µ ( F ) := � − µ ( G ) otherwise   G � F � µ ( F ) k dim F Characteristic polynomial p H ( k ) := F ∈L ( H ) • � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ❅ � ❅ ❅ ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ • � • ❅ • ❅ ❅ � • ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ • R 2 � ❅ ❅ Combinatorial Reciprocity Theorems Matthias Beck 7

  15. Hyperplane Arrangements H ⊂ R d — arrangement of affine hyperplanes L ( H ) — all nonempty intersections of hyperplanes in H  if F = R d 1   M¨ obius function µ ( F ) := � − µ ( F ) otherwise   G � F � µ ( F ) k dim F Characteristic polynomial p H ( k ) := F ∈L ( H ) • � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ❅ � ❅ ❅ ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ • � • ❅ • ❅ ❅ � • ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ • R 2 � ❅ 1 ❅ Combinatorial Reciprocity Theorems Matthias Beck 7

  16. Hyperplane Arrangements H ⊂ R d — arrangement of affine hyperplanes L ( H ) — all nonempty intersections of hyperplanes in H  if F = R d 1   M¨ obius function µ ( F ) := � − µ ( F ) otherwise   G � F � µ ( F ) k dim F Characteristic polynomial p H ( k ) := F ∈L ( H ) • � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ❅ � ❅ ❅ ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ • − 1 � • ❅ • ❅ ❅ � • ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ • R 2 � ❅ 1 ❅ Combinatorial Reciprocity Theorems Matthias Beck 7

  17. Hyperplane Arrangements H ⊂ R d — arrangement of affine hyperplanes L ( H ) — all nonempty intersections of hyperplanes in H  if F = R d 1   M¨ obius function µ ( F ) := � − µ ( F ) otherwise   G � F � µ ( F ) k dim F Characteristic polynomial p H ( k ) := F ∈L ( H ) • � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ❅ � ❅ ❅ ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ • − 1 � •− 1 ❅ •− 1 ❅ ❅ � • ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ • R 2 � ❅ 1 ❅ Combinatorial Reciprocity Theorems Matthias Beck 7

  18. Hyperplane Arrangements H ⊂ R d — arrangement of affine hyperplanes L ( H ) — all nonempty intersections of hyperplanes in H  if F = R d 1   M¨ obius function µ ( F ) := � − µ ( F ) otherwise   G � F � µ ( F ) k dim F Characteristic polynomial p H ( k ) := F ∈L ( H ) • 2 � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ❅ � ❅ ❅ ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ • − 1 � •− 1 ❅ •− 1 ❅ ❅ � • ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ • R 2 � ❅ 1 ❅ Combinatorial Reciprocity Theorems Matthias Beck 7

  19. Hyperplane Arrangements H ⊂ R d — arrangement of affine hyperplanes L ( H ) — all nonempty intersections of hyperplanes in H  if F = R d 1   M¨ obius function µ ( F ) := � − µ ( F ) otherwise   G � F µ ( F ) k dim F = k 2 − 3 k + 2 � Characteristic polynomial p H ( k ) := F ∈L ( H ) • 2 � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ ❅ � ❅ ❅ ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ • − 1 � •− 1 ❅ •− 1 ❅ ❅ � • ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ • R 2 � ❅ 1 ❅ Combinatorial Reciprocity Theorems Matthias Beck 7

  20. Hyperplane Arrangements • 2 � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ ✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ � ❅ ❅ � ❅ ❅ ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ • − 1 •− 1 •− 1 � ❅ ❅ • ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ � ❅ ❅ • R 2 � ❅ 1 ❅ µ ( F ) k dim F = k 2 − 3 k + 2 � p H ( k ) = F ∈L ( H ) Note that H divides R 2 into p H ( − 1) = 6 regions... Combinatorial Reciprocity Theorems Matthias Beck 8

Recommend


More recommend