2015/11/14 Noncommutative Instantons 1. Introduction and Reciprocity • Non ‐ Commutative (NC) spaces are defined by noncommutativity of spatial coordinates: Masashi Hamanaka [ , ] x x i : NC parameter (real const.) (Nagoya U, Japan) [ , ] (cf. CCR in QM : ) q p i YI TP Workshop QFT2015 November 10th 2015 ( ``space ‐ space uncertainty relation’’ ) Resolution of singularity ~ ・ We give a proof of one ‐ to ‐ one correspondence between moduli space of instantons and moduli space of ADHM ( new physical objects) Com. space NC Space data in noncommutative spaces. ・ MH&Toshio Nakatsu(Setsunan), NC Instantons and Reciprocity, Ex) Resolution of small instanton singularity to appear, [cf. arXiv:1311.5227] ( U(1) instantons) ・ MH&TN, work in progress. [Nekrasov-Schwarz] ASDYM eq. in 4 ‐ dim. with G=U(N) NC ASDYM eq. with G=U(N) in Moyal • ASDYM eq. (real rep.) • NC ASDYM eq. (real rep.) , 1 , 2 , 3 , 4 , , F F F F : 12 34 F A A A A A A 01 23 ( : ) F A A A A A A , F F Field strength F F 13 42 , 02 31 1 0 O 1 0 F F F F : 14 23 . A Gauge field 0 2 03 12 O 2 0 (N × N anti-Hermitian) (Spell:All products are Moyal products.) Under the spell, ( 0 , 0 ( . .)) F F F cpx rep z z z z z z 1 1 2 2 1 2 i ( ) ( ) : ( ) exp ( ) we can calculate : f x g x f x g x 2 • There are two descripitions of NC extension: ( ) ( ) ( ) ( ) ( 2 ) ‐ Moyal ‐ product formalism (deformation quantization) f x g x i f x g x O 2 Note: Coordinates and functions themselves ‐ Operator formalism (Connes’ theory) are c-number-valued usual ones i i [ , ] : ( ) x x x x x x 2 2 i G=U(N) NC ASDYM in operator formalism 2. Atiyah ‐ Drinfeld ‐ Hitchin ‐ Manin Construction based on duality for the instanton moduli space • Take coordinates as operators (in 2dim): ˆ [ ˆ , ˆ ] complex [ ˆ , ] 2 rescale [ ˆ , ˆ ] 1 4dim. ASDYang-Mills eq. ADHM eq. (≒0dim. ASDYM) x y i z z a a (Difficult) (Easy) field (infinite matrix): ann op. cre op. [ , ] [ , ] 0 0 F F B B B B I I J J ˆ 1 1 2 2 ˆ acting on Fock space: ( ˆ , ) z z z z 1 1 2 2 F z z F m n [ , ] 0 B B IJ mn 0 F 1 2 1:1 N × N PDE , 0 , 1 , 2 ,... z z m n 1 2 H C n n k × k Matrix eqs. integration Occupation number basis Sol.= instantons Sol.=ADHM data ˆ ˆ 2 ( ˆ , ) Tr F z z (G=U(N), C =k) (G=`U(k)’) H 2 ˆ , , F F m m n n : , : , : • NC ASDYM eq. (real rep.) , , , 1 2 1 2 m m n n : B I J 1 2 1 2 A N N k k k N N k 1 , 2 m , m , n , n 1 2 1 2 ˆ ˆ 1 , 0 F F H 01 23 O Gauge trf.: Gauge trf.: 1 1 0 ˆ ˆ ~ ~ ~ , 1 1 1 , ( ) F F A g A g g g B g B g g U k 0 2 02 31 1 , 2 1 , 2 H O ~ ~ ˆ ˆ ( ) 2 2 1 , 0 g U N I g I J J g F F 03 12 1
2015/11/14 Fourier ‐ Mukai ‐ Nahm transformation Fourier ‐ Mukai ‐ Nahm transformation Beautiful duality between instanton moduli on 4 ‐ tori Beautiful duality between instanton moduli on 4 ‐ tori and instanton moduli on the dual tori and instanton moduli on the dual tori 4dim. ASDYang-Mills eq. 4dim. ASD Yang-Mills eq. 4dim. ASDYang-Mills eq. 4dim. ASD Yang-Mills eq. on a 4-torus on the dual torus on a 4-torus on the dual torus ~ ~ ~ ~ G 0 0 F F 0 F F 0 F F F F z z z z z z z z 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 ~ 0 ~ 0 F F N × N PDE 0 N × N PDE 1:1 0 F F F z z k × k PDE z z k × k PDE 1 2 1 2 1 2 1 2 Sol.=instantons 1:1 Sol.=the dual instantons Sol.=instantons Sol.=the dual instantons (G=U(N), C =k) (G=U(k), C =N) (G=U(N), C =k) (G=U(k), C =N) 2 2 2 2 map F (Dirac eq.) ~ ~ : ( ) , : A x V V ( ) : A N N A k k A k k Define the maps F & G, N × N ~ ( ) 0 : ( , 1 ) V e A ix V e i 2 & G ◦ F=id. & F ◦ G=id. a : 2 V k N On a 4-torus On the dual 4-torus On a 4-torus : On the dual 4-torus : x Family index thm. Fourier ‐ Mukai ‐ Nahm trf. (radii of the torus ∞ ) Fourier ‐ Mukai ‐ Nahm transformation Beautiful duality between instanton moduli on 4 ‐ tori Duality between instanton moduli on R and instanton moduli on the dual tori and instanton moduli on ``1pt.’’ [cf. van Baal, hep ‐ th/9512223] 4dim. ASDYang-Mills eq. 4dim. ASD Yang-Mills eq. 4dim. ASDYang-Mills eq. 0dim. ASD Yang-Mills eq. ~ ~ ~ ~ ~ on a 4-torus on the dual torus : [ , ] F A A A A ~ ~ ~ ~ 0 0 F F 0 F F 0 F F F F z z z z z z z z 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 Matrix eq.! ~ ~ 0 0 F F 1:1 0 1:1 0 N × N PDE F N × N PDE F z z k × k PDE z z k × k PDE 1 2 1 2 1 2 1 2 Sol.=instantons Sol.=the dual instantons Sol.=instantons Sol.=``dual instantons’’ (G=U(N), C =k) (G=U(k), C =N) (G=U(N), C =k) (G=U(k), ``C =N’’) 2 2 2 2 map G (Dirac eq.) map F (0dim Dirac eq.) ~ ~ ~ ( ) : A x N N ( ) , A V V : A A k k ~ k × k ( ) 0 ( ) 0 V e A ix V e D e A i x Matrix eq. ! N : 2 : 2 k V k N 4 On the dual 4-torus 1 pt. On a 4-torus : On the dual 4-torus : On a 4-torus R x Linear alg. Family index thm. D ‐ brane interpretation of ADHM Construction Atiyah ‐ Drinfeld ‐ Hitchin ‐ Manin (ADHM) Construction based on the following duality [Witten, Douglas] 4dim. ASDYang-Mills eq. ADHM eq.. (≒0dim. ASDYM) 4dim. ASDYang-Mills eq. ADHM eq. (≒0dim. ASDYM) [ , ] [ , ] RHS is in fact z z z z (G=U(N), C =k) (G=`U(k)’) 2 1 1 2 2 G(4dim D.eq.) G(4dim D.eq.) [ , ] [ , ] 0 [ , ] [ , ] 0 0 0 F F B B B B I I J J F F B B B B I I J J 1 1 2 2 1 1 2 2 z z z z z z z z 1 1 2 2 1 1 2 2 [ , ] 0 [ , ] 0 B B IJ B B IJ 0 0 F F 1 2 1 2 N × N PDE F(0dim D.eq.) N × N PDE F(0dim D.eq.) z z z z 1 2 1 2 k × k matrix eq. k × k matrix eq. 1:1 Sol.=instantons Sol.=ADHM data SUSY trf. of gaugino D-term conditions (G=U(N), C =k) (G=`U(k)’) 2 0-0 strings k × k: B Proved in the F : , 0-4 strings k × N : I,J B k k : A N N 1 , 2 ● same way as ( , ) diag F F ● SD ASD : , : I J the Nahm trf. k N N k ● N D4 branes k D0 branes 2
Recommend
More recommend