cohomology theories on locally conformally symplectic
play

Cohomology theories on locally conformally symplectic manifolds H - PowerPoint PPT Presentation

Cohomology theories on locally conformally symplectic manifolds H ong V an L e Institute of Mathematics of ASCR Zitna 25, 11567 Praha 1, Czech Republic Pacific Rim Geometry Conference, Osaka, December 2011 joint work with Ji ri


  1. Cohomology theories on locally conformally symplectic manifolds Hˆ ong Vˆ an Lˆ e Institute of Mathematics of ASCR Zitna 25, 11567 Praha 1, Czech Republic Pacific Rim Geometry Conference, Osaka, December 2011

  2. joint work with Jiˇ ri Vanˇ zura • Motivations • Primitive forms and primitive (co)homology • Primitive cohomology and Lichnerowicz- Novikov cohomology • Examples and historical backgrounds • Open problems

  3. • I. Motivations A differentiable manifold ( M 2 n , ω, θ ) provided with a non-degenerate 2-form ω and a clo- sed 1-form θ is called a locally conformally symplectic (l.c.s.) manifold, if dω = − ω ∧ θ , dθ = 0. The 1-form θ is called the Lee form f and ω = e − f ω 0 , where of ω . Locally θ = d dω 0 = 0. L.c.s. forms were introduced by Lee, and have been extensively studied by Vaisman.

  4. L.c.s. manifolds are phase spaces for a natu- ral generalization of Hamiltonian dynamics, mapping torus of a contactomorphism, sim- ple model for twisted symplectic geometry. They contain the subclass of L.C. K. mani- folds. The Lichnerowicz deformed differential d θ : Ω ∗ ( M 2 n ) → Ω ∗ ( M 2 n ) is defined by d θ ( α ) := dα + θ ∧ α. Note that d 2 θ = 0 and d θ ( ω ) = 0. The resulting Lichnerowicz cohomology groups,

  5. (Novikov cohomology groups) are important conformal invariants of l.c.s. manifolds. Two l.c.s. forms ω and ω ′ on M 2 n are con- formally equivalent, if ω ′ = ± ( e f ) ω for some f ∈ C ∞ ( M 2 n ). In this case θ ′ = θ ∓ d f , hence d θ and d θ ′ are gauge equivalent : f ∧ ) α = e ± f d θ ( e ∓ f α ) . d θ ′ ( α ) = ( d θ ∓ d H ∗ (Ω ∗ ( M 2 n ) , d θ ) = H ∗ (Ω ∗ ( M 2 n ) , d θ ′ ) . Remark : By the Darboux theorem there is no local conformal invariant of l.c.s. ma- nifolds. AIM: construct new cohomological

  6. invariants for l.c.s. manifolds. L : Ω ∗ ( M 2 n ) → Ω ∗ ( M 2 n ) , α �→ ω ∧ α. d θ L = Ld. d k := d kθ . d k L p = L p d k − p . I ω : T x M 2 n → T ∗ x M 2 n , V �→ i V ω . G ω ∈ Γ(Λ 2 TM 2 n ) s.t. i G ω I ω = Id , where x M 2 n → T x M 2 n , V �→ i V ( G ω ( x )) . i G ω : T ∗ ∗ ω : Ω p ( M 2 n ) → Ω 2 n − p ( M 2 n ) , β ∧ ∗ ω α := Λ p G ω ( β, α ) ∧ ω n n ! . ∗ 2 ω = Id. L ∗ : Ω p ( M 2 n ) → Ω p − 2 ( M 2 n ) , α p �→ − ∗ ω L ∗ ω α p .

  7. ω : Ω p ( M 2 n ) → Ω p − 1 ( M 2 n ) , ( d k ) ∗ α p �→ ( − 1) p ∗ ω d n + k − p ∗ ω ( α p ) . π k : Ω ∗ ( M 2 n ) → Ω k ( M 2 n ) be the projection. L ∗ = i ( G ω ), [ L ∗ , L ] = A, [ A, L ] = − 2 L, [ A, L ∗ ] = 2 L ∗ . II Primitive forms and primitive (co)homology x M 2 n , 0 ≤ k ≤ n , is called primitive, α ∈ Λ k T ∗ if L n − k +1 α = 0. α ∈ Λ k T ∗ x M 2 n , n + 1 ≤ k ≤ 2 n , is called primitive, if α = 0. β ∈ Λ k T ∗ x M 2 n is called coeffective, if Lβ = 0.

  8. x ( M 2 n ) : = the set of primitive elements P k in Λ k T ∗ x M 2 n . Lemma An element α ∈ Λ k T ∗ x M 2 n , is primi- tive, if and only if L ∗ α = 0. x M 2 n is coeffective, 2. An element β ∈ Λ k T ∗ if and only if ∗ ω β is primitive. x M 2 n = Lefschetz decomposition Λ n − k T ∗ 3. P n − k ( M 2 n ) ⊕ LP n − k − 2 ( M 2 n ) ⊕ L 2 P n − k − 4 ( M 2 n ) · · · , x x x x M 2 n = L k P n − k Λ n + k T ∗ ( M 2 n ) ⊕ L k +1 P n − k − 2 ( M 2 n ) · · · , x x for n ≥ k ≥ 0. 4. L k : Λ n − k T ∗ x M 2 n is an iso- x M 2 n → Λ n + k T ∗ morphism, for 0 ≤ k ≤ n .

  9. x M 2 n → Λ n − k T ∗ x M 2 n is injec- 5. L : Λ n − k − 2 T ∗ tive, for k = − 1 , 0 , 1 , · · · , n − 2. p := (Ω ∗ ( M 2 n ) , d p ). K ∗ F 0 K ∗ p := K ∗ p ⊃ F 1 K ∗ p := LK ∗ p − 1 ⊃ · · · ⊃ F k K ∗ p := L k K ∗ p − k ⊃ · · · ⊃ F n +1 K ∗ p = { 0 } . d + k := Π pr d k : Ω q ( M 2 n ) → P q − 1 ( M 2 n ) . d k = d + k + Ld − k ,

  10. d − k : Ω q ( M 2 n ) → Ω q − 1 ( M 2 n ) , 0 ≤ q ≤ n . ( d + k ) 2 ( α q ) = 0 , d − k − 1 d − k ( α q ) = 0 , q ≤ n, k ) α q = 0 , q ≤ n − 1 , k d + k + d + ( d − k − 1 d − ( d k − 1 ) ∗ ω ( d k ) ∗ ω ( α q ) = 0 . Assume that 0 ≤ q ≤ n − 1. k ) := ker d + k ∩ P q ( M 2 n ) H q ( P ∗ ( M 2 n ) , d + . d + k ( P q − 1 ( M 2 n )) ker( d k ) ∗ ω ∩ P q ( M 2 n ) H q ( P ∗ ( M 2 n ) , ( d k ) ∗ ω ) := ω ( P q +1 ( M 2 n )) . ( d k +1 ) ∗

  11. k ) := ker d − k ∩ P q ( M 2 n ) H q ( P ∗ ( M 2 n ) , d − . d − k +1 ( P q +1 ( M 2 n )) Proposition Assume dim( M 2 n , ω, θ ) ≥ 2. 1. If [( k − 1) θ ] � = 0 ∈ H 1 ( M 2 n , R ) then H 1 ( P ∗ ( M 2 n ) , d + k ) = H 1 (Ω ∗ ( M 2 n ) , d k ) . 2. If [( k − 1) θ ] = 0 ∈ H 1 ( M 2 n , R ) then H 1 ( P ∗ ( M 2 n ) , d + k ) = H 1 (Ω ∗ ( M 2 n ) , d θ ) if [ ω ] � = 0 ∈ H 2 (Ω ∗ ( M 2 n ) , d θ ) H 1 ( P ∗ ( M 2 n ) , d + k ) = H 1 (Ω ∗ ( M 2 n ) , d θ ) ⊕ R

  12. if [ ω ] = 0 ∈ H 2 (Ω ∗ ( M 2 n ) , d θ ) . Proposition Assume that 0 ≤ k ≤ n . If α ∈ P k ( M 2 n ), then for all l l ( α k ) = ( d l ) ∗ ω ( α k ) d − n − k + 1 . Hence H k ( P ∗ ( M 2 n ) , d − l ) = H k ( P ∗ ( M 2 n ) , ( d l ) ∗ ω ). Proposition Let ( M 2 n , ω, θ ) be a compact l.c.s manifold. Then H k ( P ∗ ( M 2 n ) , d + l ) = H k ( P ∗ ( M 2 n ) , ( d − l + k − n ) ∗ ω ) for all l and 0 ≤ k ≤ n − 1.

  13. III The relations between primitive coho- mology and Lichnerowicz-Novikov coho- mology The spectral sequence { E p,q k,r , d k,r : E p,q k,r → E p + r,q − r +1 } , r ≥ 0, is associated to the fil- k,r tration ( F ∗ K ∗ k , d k ). k, 0 ∼ E p,q = P q − p ( M 2 n ) if n ≥ q ≥ p E p,q k, 0 = 0 otherwise . E p,q k, 1 = H q − p ( P ∗ ( M 2 n ) , d + k − p ) if 0 ≤ p ≤ q ≤ n − 1 ,

  14. P n − p ( M 2 n ) E p,n k, 1 = , if 0 ≤ p ≤ n, d + k − p ( P n − p − 1 ( M 2 n )) E p,q k, 1 = 0 otherwise . d l + p, 1 : E p,q l + p, 1 → E p +1 ,q l + p, 1 is defined for 0 ≤ p ≤ q ≤ n by H q − p ( P ∗ ( M 2 n ) , d + l ) → H q − p − 1 ( P ∗ ( M 2 n ) , d + l − 1 ) , α ] �→ [ d − [˜ l ˜ α ] . Corollary Assume that 1 ≤ p ≤ q ≤ n − 1. Then E p,q l, 2 = E p − 1 ,q − 1 . l, 2

  15. Theorem The spectral sequences E p,q k,r on ( M 2 n , ω, θ ) and on ( M 2 n , ω ′ , θ ′ ) are isomor- phic, if ω and ω ′ are conformal equivalent. Furthermore, the E k, 1 -terms of the spectral sequences on ( M, ω, θ ) and ( M, ω ′ , θ ′ ) are iso- morphic, if ω ′ = ω + d θ ρ for some ρ ∈ Ω 1 ( M 2 n ). Theorem Assume that ω = d 1 τ . ( M 2 n ) ⊕ H q − p − 1 1. E p,q l + p, 1 = H q − p ( M 2 n ) for l − 1 l 0 ≤ p ≤ q ≤ n − 1. 2. E p,q l, 2 = 0, if 1 ≤ p ≤ q ≤ n − 1. 3. If 0 ≤ q ≤ n , then E 0 ,q l, 2 = H q l ( M 2 n ).

  16. l + p, 2 = H n + p 4. If 0 ≤ p ≤ n then E p,n l + p ( M 2 n ). 5. The spectral sequence { E p,q l,r , d l,r } stabili- zes at the term E l, 2 . l := ker d − l ∩ Ω k ( M 2 n ) C k d l (Ω k − 1 ( M 2 n )) . Lemma For 0 ≤ p ≤ q ≤ n − 1 the following sequences is exact 0 → (Ω q − ( p +1) ( M 2 n ) , d l − 1 ) L → (Ω q +1 − p ( M 2 n ) , d l ) → Π L p → ( E p,q +1 l + p, 0 , d l + p, 0 ) → 0 .

  17. L p ¯ δ p,q · · · → H q − p → H q − ( p +1) → E p,q ( M 2 n ) ( M 2 n ) → l + p, 1 l − 1 l ¯ L p ¯ → H q +1 − p L → E p,q +1 ( M 2 n ) l + p, 1 → · · · l δ p,n − 1 ( M 2 n ) [ L ] · · · → E p,n − 1 H n − ( p +2) → C n − p → → . l + p, 1 l − 1 l If moreover ω = d 1 τ the following sequences are exact L p ¯ l + p, 1 → H q − ( p +1) 0 → H q − p → E p,q ( M 2 n ) ( M 2 n ) → 0 , l − 1 l → E p − 1 ,q l + p, 2 → H q − p ( M 2 n ) δ → H q − p ( M 2 n ) → l l l + p, 2 → H q − ( p +1) ( M 2 n ) δ → E p,q → . l − 1

  18. For 0 ≤ p ≤ n − 1 we have [ L p ] δ p,n 0 → C n − p → T n − ( p +1) → E p,n → 0 , l + p, 1 l − 1 l T n − ( p +1) := ker[ L p +1 ] : C n − ( p +1) → H n + p +1 . l − 1 l − 1 l + p Theorem Assume that ω T = d T ρ and T ≥ 2. Then the spectral sequence ( E p,q l,r , d l,r ) stabi- lizes at terms E ∗ , ∗ l,T +1 . The main idea is to find a short exact se- quence, whose middle term is E ∗ , ∗ l,T , and mo- reover, this short exact sequence is induced

  19. from the trivial action of the operator L T on (a part of) complexes entering in the derived exact couples. Theorem Assume that ( M 2 n , ω, θ ) is a com- pact connected globally conformally symplec- tic manifold. Then the spectral sequence ( E p,q k,r , d k,r ) stabilizes at the E ∗ , ∗ k, 2 -term. The main idea: For symplectic manifolds ( M 2 n , ω ) the term E p,p k , 0 ≤ p ≤ 1 and k ≥ 1, is generated by ω p , which acts on E 0 ,r injec- k tively, if p + r ≤ n .

  20. IV Examples and historical backgrounds • For θ = 0 there is known construction of coeffective cohomology groups (Bouche, Fernandez, De Leon) which are dual to the primitive cohomology groups (Tseng-Yau) via the the symplectic star operators. • There is a compact 6-dimensional nilmani- fold M 6 equipped with a family of symplectic forms ω t , t ∈ [0 , 1] , with varying cohomo- logy classes [ ω t ] ∈ H 2 ( M 6 , R ). Fernandez at all. showed that the coeffective cohomology

Recommend


More recommend