a symplectic kovacic s algorithm in dimension 4
play

A symplectic Kovacics algorithm in dimension 4 Thierry COMBOT - PowerPoint PPT Presentation

Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples A symplectic Kovacics algorithm in dimension 4 Thierry COMBOT University of Burgundy, Dijon Joint work with Camilo SANABRIA, Universidad de los Andes,


  1. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples A symplectic Kovacic’s algorithm in dimension 4 Thierry COMBOT University of Burgundy, Dijon Joint work with Camilo SANABRIA, Universidad de los Andes, Bogota July 19, 2018 1/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  2. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples A matrix M ∈ GL 2 n ( K ) is symplectic ⇔ M t JM = J where � � 0 I n J = . − I n 0 A matrix M ∈ GL 2 n ( K ) is projectively symplectic ⇔ M t JM = λ J for some λ ∈ K ∗ . Set of symplectic/projective symplectic matrices: SP 2 n ( K ) , PSP 2 n ( K ) The Lie algebras: sp 2 n ( K ) = { M ∈ M 2 n ( K ) , M t J + JM = 0 } , psp 2 n ( K ) = { M ∈ M 2 n ( K ) , ∃ λ ∈ K , M t J + JM = λ J } . 2/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  3. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples Galois group of a linear differential operator L ∈ K ( z )[ ∂ ]: group of automorphisms of the field generated by the solutions of L fixing K ( z ) An operator L of order 2 n is (projectively) symplectic ⇔ Gal( L ) isomorphic to a subgroup of SP 2 n ( K ) (resp. PSP 2 n ( K )). 3/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  4. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples A more workable definition: Proposition An operator L of order 2 n is (projectively) symplectic, if and only if there exists an invertible matrix P ∈ M 2 n ( K ( z )) such that P − 1 AP + P ′ P ∈ sp 2 n ( K ( z )) , resp. P − 1 AP + P ′ P ∈ psp 2 n ( K ( z )) with A is the companion matrix of L. 4/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  5. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples Proposition The operator L projectively symplectic ⇔ ∃ an invertible antisymmetric matrix W ∈ M 2 n ( K ( z )) such that A t W + WA + W ′ + λ W = 0 for a λ ∈ K ( z ) , and L is symplectic for λ = 0 . The gauge transformation matrix can be obtained by W = P t JP . 5/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  6. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples IsSymplectic Input: A linear differential operator L of order 2 n with coefficients in K ( z ). Output: A projective symplectic structure if it exists. 1 Write down the system A t W + WA + W ′ = 0. 2 Compute a basis B = { W 1 , . . . , W m } of the hyperexponential solutions. 3 For each exponential type of a solution in B , look for linear combinations over K of the W i ’s with same exponential type such that det( a 1 W i 1 + . . . + a p W i p ) � = 0. If there are none, return []. Else return a 1 W i 1 + . . . + a p W i p . 6/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  7. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples Definition A Liouvillian solution of L is a solution of L built by successive integrations, exponentiations and algebraic extensions of K ( z ) . The purpose of original Kovacic algorithm is to compute Liouvillian solutions of an operator L ∈ K ( z )[ ∂ ] of order 2. We want here to generalize it to operators of order 4, but using the additional constraint that L should be symplectic. 7/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  8. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples The vector space L of Liouvillian solutions is a subspace of C 4 . The differential Galois group of L stabilize L , and its reduction to L is a virtually solvable group. Two cases appears: There exists a sub vector space stable by the Galois group: this can be tested by trying to factorize L . There is none except the trivial ones, and L is irreducible. 8/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  9. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples Theorem A proper algebraic subgroup of SP 4 ( C ) is up to conjugacy generated by elements of the form  ⋆ ⋆ ⋆ ⋆   ⋆ ⋆ ⋆ ⋆  ⋆ ⋆ ⋆ ⋆ 0 ⋆ ⋆ ⋆      or  or     0 0 0 ⋆ ⋆ ⋆ ⋆ ⋆   0 0 ⋆ ⋆ 0 0 0 ⋆     ⋆ ⋆ 0 0 0 0 ⋆ ⋆ 0 0 0 0 ⋆ ⋆ ⋆ ⋆      ,  .     0 0 ⋆ ⋆ ⋆ ⋆ 0 0   0 0 0 0 ⋆ ⋆ ⋆ ⋆ 9/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  10. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples The important point of the symplectic condition: the complicated finite groups of SL 4 ( C ) do not appear! If L is reducible, then it admits a factorization in two operators of order 2 ⇒ apply Kovacic algorithm on each factor If L is irreducible, then it admits a LCLM factorization in a quadratic extension of K ( z ). 10/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  11. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples Proposition The kernel of a Poisson structure W is an invariant vector space. Proposition Let L be an irreducible operator with symplectic structure W 1 . All projective Poisson structures are symplectic and their Pfaffian ∈ K ( z ) . If Gal ( L ) = Z 2 ⋉ G 1 , G 1 ⊂ SL 2 ( K ) , then L admits two projective symplectic structures in a quadratic extension of K ( z ) . If L admits a projective symplectic structure W 2 � = W 1 , then ∃ λ ∈ C such that W 1 + λ W 2 is a strict Poisson structure in a quadratic extension of K ( z ) . 11/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  12. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples Example: 16 z 5 − 80 z 4 + 128 z 3 − 63 z 2 − 2 z + 4 L = Dz 4 + 2 ( z − 1) Dz 3 Dz 2 � � − − 4 z 2 ( z − 2) 2 z ( z − 2) 32 z 4 − 128 z 3 + 144 z 2 − 33 z + 1 4 z 5 − 20 z 4 + 32 z 3 − 21 z 2 + 10 z + 2 � � � � Dz + ( z − 1) 4 z 2 ( z − 2) 2 z 2 ( z − 2) 2 admits 3 projective symplectic structures W 1 , W 2 , W 3 4 z 5 − 16 z 4+20 z 3 − 10 z 2+5 z − 1 z 3 / 2 ( z − 2) (2 − 2 z )  √ z ( z − 2) (3 z − 1)  0 √ z     � 8 z 3 − 8 z 2 − 1 �  − 4 z 5 − 16 z 4+20 z 3 − 10 z 2+5 z − 1 ( z − 2)   − 1 / 2 √ z ( z − 2)  0  √ z 4 √ z        � 8 z 3 − 8 z 2 − 1 �  ( z − 2)  z 3 / 2 ( z − 2) −√ z ( z − 2) (3 z − 1)   − 1 / 4 0  √ z      − z 3 / 2 ( z − 2) ( − 2 z + 2) 1 / 2 √ z ( z − 2) − z 3 / 2 ( z − 2) 0 12/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  13. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples 4 z 5 − 24 z 4+52 z 3 − 50 z 2+19 z +1 3  z √ z − 2 (3 z − 5)  0 z ( z − 2) 2 (2 − 2 z ) √ z − 2     � 8 z 3 − 40 z 2+64 z − 33 �   − 4 z 5 − 24 z 4+52 z 3 − 50 z 2+19 z +1 z  − 1 / 2 z √ z − 2  0   √ z − 2 4 √ z − 2       � 8 z 3 − 40 z 2+64 z − 33 �  z   − z √ z − 2 (3 z − 5) z ( z − 2) 3 / 2  − 1 / 4 0  √ z − 2      − z ( z − 2) 3 / 2 ( − 2 z + 2) 1 / 2 z √ z − 2 − z ( z − 2) 3 / 2 0 √ � 16 z 3 − 48 z 2+32 z +1 �  z ( z − 2) √  z ( z − 2)( z − 1) � 0 z ( z − 2) − 4 z ( z − 2) z ( z − 2)       √ � 16 z 3 − 48 z 2+32 z +1 �  z ( z − 2)   �  1 / 4 0 z ( z − 2) 0   z ( z − 2) −      √  z ( z − 2)( z − 1)  �  z ( z − 2) 0 0   − z ( z − 2)     � z ( z − 2) 0 0 0 − 13/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

  14. Symplectic Operators A Kovacic-style algorithm A symplectic Kovacic algorithm Examples det( λ 1 W 1 + λ 2 W 2 + λ 3 W 3 ) = z 2 ( z − 2) 2 ( λ 2 1 + λ 2 2 − λ 2 3 ) 2 ⇒ L admits several LCLM factorizations in quadratic extensions. Dz 1 L = LCLM ( Dz 2 − √ z ( z − 2) + 2 , 2( z − 2) − 2 z − Dz 1 Dz 2 − 2( z − 2) − 2 z + √ z ( z − 2) + 2) The Kovacic algorithm can be applied on the order 2 factors with base field K ( z , √ z ). 14/ 19 Thierry COMBOT A symplectic Kovacic’s algorithm in dimension 4

Recommend


More recommend