coalgebraic walks in quantum and turing computation
play

Coalgebraic Walks in Quantum and Turing Computation Bart Jacobs - PowerPoint PPT Presentation

Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Coalgebraic Walks in Quantum and Turing Computation Bart Jacobs Institute for Computing


  1. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Distribution monad D For a set X , define � support( ϕ ) is finite, and � � D ( X ) = { ϕ : X → [0 , 1] x ϕ ( x ) = 1 } Such ϕ ∈ D ( X ) is a formal convex combination:  support( ϕ ) = { x 1 , . . . , x n }    r 1 x 1 + · · · + r n x n where r i = ϕ ( x i ) > 0   r 1 + · · · + r n = 1  Coalgebras X → D ( X ) are Markov chains, giving probabilistic transitions: r i − → x i � x with i r i = 1 . Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 8 / 42

  2. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Multiset monad M Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 9 / 42

  3. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Multiset monad M The mulitset monad M over complex numbers is similar to, but simpler than, the distribution monad D . For a set X , now define Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 9 / 42

  4. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Multiset monad M The mulitset monad M over complex numbers is similar to, but simpler than, the distribution monad D . For a set X , now define � support( ϕ ) is finite } � M ( X ) = { ϕ : X → C Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 9 / 42

  5. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Multiset monad M The mulitset monad M over complex numbers is similar to, but simpler than, the distribution monad D . For a set X , now define � support( ϕ ) is finite } � M ( X ) = { ϕ : X → C Such ϕ ∈ M ( X ) is a formal linear combination: � support( ϕ ) = { x 1 , . . . , x n } z 1 x 1 + · · · + z n x n where z i = ϕ ( x i ) ∈ C Such formal linear combinations form the free vector space on X . Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 9 / 42

  6. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Multiset monad M The mulitset monad M over complex numbers is similar to, but simpler than, the distribution monad D . For a set X , now define � support( ϕ ) is finite } � M ( X ) = { ϕ : X → C Such ϕ ∈ M ( X ) is a formal linear combination: � support( ϕ ) = { x 1 , . . . , x n } z 1 x 1 + · · · + z n x n where z i = ϕ ( x i ) ∈ C Such formal linear combinations form the free vector space on X . Coalgebras X → M ( X ) are like weighted automata, adding weights/resources in C as labels to transitions. Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 9 / 42

  7. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Outline Introduction Walks illustrating computation types Non-deterministic walks Probabilistic walks Quantum walks Quantum walks, coalgebraically Matrix representation Reversible computation Turing Machines Conclusions Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 10 / 42

  8. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Walk the walk Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 11 / 42

  9. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Walk the walk Consider a line of integer points . . . , − 2 , − 1 , 0 , 1 , 2 , . . . ∈ Z . Different styles of walks, say of a drunkard, on this line will be described next: • non-deterministic • probabilistic • quantum Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 11 / 42

  10. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Walk the walk Consider a line of integer points . . . , − 2 , − 1 , 0 , 1 , 2 , . . . ∈ Z . Different styles of walks, say of a drunkard, on this line will be described next: • non-deterministic • probabilistic • quantum All three computational styles can & will be represented coalgebraically. Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 11 / 42

  11. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Non-deterministic walks: definition Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 12 / 42

  12. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Non-deterministic walks: definition Coalgebraic represenation, of possible left-or-right stepping: s � P ( Z ) Z � { k − 1 , k + 1 } k � Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 12 / 42

  13. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Non-deterministic walks: definition Coalgebraic represenation, of possible left-or-right stepping: s � P ( Z ) Z � { k − 1 , k + 1 } k � Iteration, starting in 0 ∈ Z , yields: 0 �→ {− 1 , 1 } Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 12 / 42

  14. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Non-deterministic walks: definition Coalgebraic represenation, of possible left-or-right stepping: s � P ( Z ) Z � { k − 1 , k + 1 } k � Iteration, starting in 0 ∈ Z , yields: 0 �→ {− 1 , 1 } �→ {− 2 , 0 , 2 } Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 12 / 42

  15. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Non-deterministic walks: definition Coalgebraic represenation, of possible left-or-right stepping: s � P ( Z ) Z � { k − 1 , k + 1 } k � Iteration, starting in 0 ∈ Z , yields: 0 �→ {− 1 , 1 } �→ {− 2 , 0 , 2 } �→ {− 3 , − 1 , 1 , 3 } Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 12 / 42

  16. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Non-deterministic walks: definition Coalgebraic represenation, of possible left-or-right stepping: s � P ( Z ) Z � { k − 1 , k + 1 } k � Iteration, starting in 0 ∈ Z , yields: 0 �→ {− 1 , 1 } �→ {− 2 , 0 , 2 } �→ {− 3 , − 1 , 1 , 3 } · · · {− n , − n + 2 , · · · n − 2 , n } Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 12 / 42

  17. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Non-deterministic walks: definition Coalgebraic represenation, of possible left-or-right stepping: s � P ( Z ) Z � { k − 1 , k + 1 } k � Iteration, starting in 0 ∈ Z , yields: · · · · · · -3 -2 -1 0 1 2 3 0 �→ {− 1 , 1 } • � � � � �→ {− 2 , 0 , 2 } • • � � � � � � � � �→ {− 3 , − 1 , 1 , 3 } • • • � � � � � � � � � � � � • • • • · · · {− n , − n + 2 , · · · n − 2 , n } � � � � � � � � � � � � � � � � • • • • • etc Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 12 / 42

  18. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Non-deterministic walks: iteration Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 13 / 42

  19. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Non-deterministic walks: iteration Formally, iteration is done via the Kleisli extension endomap: s # � P ( Z ) P ( Z ) U � � � k ∈ U { k − 1 , k + 1 } Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 13 / 42

  20. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Non-deterministic walks: iteration Formally, iteration is done via the Kleisli extension endomap: s # � P ( Z ) P ( Z ) U � � � k ∈ U { k − 1 , k + 1 } The subset of successors of 0 ∈ Z , after n steps, is obtained as the n -th iterate: s # � n � ( { 0 } ) {− n , − n + 2 , · · · n − 2 , n } . = Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 13 / 42

  21. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Non-deterministic walks: iteration Formally, iteration is done via the Kleisli extension endomap: s # � P ( Z ) P ( Z ) U � � � k ∈ U { k − 1 , k + 1 } The subset of successors of 0 ∈ Z , after n steps, is obtained as the n -th iterate: s # � n � ( { 0 } ) {− n , − n + 2 , · · · n − 2 , n } . = Aside : categorically, this can be described directly as iteration in the Kleisli category of the powerset monad P . Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 13 / 42

  22. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Probabilistic walks: definition Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 14 / 42

  23. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Probabilistic walks: definition Probabilistic left-or-right stepping, each with chance 1 2 is expressed via a formal convex sum / distribution, as: d � D ( Z ) Z � 1 2 ( k − 1) + 1 k � 2 ( k + 1) Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 14 / 42

  24. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Probabilistic walks: definition Probabilistic left-or-right stepping, each with chance 1 2 is expressed via a formal convex sum / distribution, as: d � D ( Z ) Z � 1 2 ( k − 1) + 1 k � 2 ( k + 1) Iteration, starting in 0 ∈ Z , now yields: 0 �→ 1 2 (-1) + 1 2 (1) Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 14 / 42

  25. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Probabilistic walks: definition Probabilistic left-or-right stepping, each with chance 1 2 is expressed via a formal convex sum / distribution, as: d � D ( Z ) Z � 1 2 ( k − 1) + 1 k � 2 ( k + 1) Iteration, starting in 0 ∈ Z , now yields: 0 �→ 1 2 (-1) + 1 2 (1) �→ 1 4 (-2) + 1 2 (0) + 1 4 (2) Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 14 / 42

  26. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Probabilistic walks: definition Probabilistic left-or-right stepping, each with chance 1 2 is expressed via a formal convex sum / distribution, as: d � D ( Z ) Z � 1 2 ( k − 1) + 1 k � 2 ( k + 1) Iteration, starting in 0 ∈ Z , now yields: 0 �→ 1 2 (-1) + 1 2 (1) �→ 1 4 (-2) + 1 2 (0) + 1 4 (2) �→ 1 8 (-3) + 3 8 (-1) + 3 8 (1) + 1 8 (3) Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 14 / 42

  27. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Probabilistic walks: definition Probabilistic left-or-right stepping, each with chance 1 2 is expressed via a formal convex sum / distribution, as: d � D ( Z ) Z � 1 2 ( k − 1) + 1 k � 2 ( k + 1) Iteration, starting in 0 ∈ Z , now yields: · · · · · · -3 -2 -1 0 1 2 3 1 � 0 �→ 1 2 (-1) + 1 � � 2 (1) � 1 1 2 � 2 � � � � � �→ 1 4 (-2) + 1 2 (0) + 1 � � 4 (2) 1 1 1 4 2 4 � � � � � � � � � � � � �→ 1 8 (-3) + 3 8 (-1) + 3 8 (1) + 1 1 3 3 1 8 (3) 8 � 8 � 8 � 8 � � � � � � � � � � � � � 1 1 5 1 1 16 4 8 4 16 etc Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 14 / 42

  28. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Probabilistic walks: the general formula Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 15 / 42

  29. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Probabilistic walks: the general formula This tree of probabilities involves Pascal’s triangle. Starting in k ∈ Z , after n iterations one obtains the formal convex sum: � n � n � n � n � n � � � � � 0 1 2 n − 1 n 2 n ( k − n )+ 2 n ( k − n +2)+ 2 n ( k − n +4)+ . . . + ( k + n − 2)+ 2 n ( k + n ) 2 n Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 15 / 42

  30. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Probabilistic walks: the general formula This tree of probabilities involves Pascal’s triangle. Starting in k ∈ Z , after n iterations one obtains the formal convex sum: � n � n � n � n � n � � � � � 0 1 2 n − 1 n 2 n ( k − n )+ 2 n ( k − n +2)+ 2 n ( k − n +4)+ . . . + ( k + n − 2)+ 2 n ( k + n ) 2 n Using the sum formula for binomial coefficients: � n � n � n � n � n � � � � � 2 n . + + + · · · + + = 0 1 2 n − 1 n Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 15 / 42

  31. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Probabilistic walks: iteration Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 16 / 42

  32. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Probabilistic walks: iteration Again there is a Kleisli extension endomap d # : D ( Z ) → D ( Z ) � � r 1 k 1 + · · · + r n k n � � 1 2 r 1 ( k 1 − 1) + 1 2 r 1 ( k 1 + 1) + · · · + 1 2 r n ( k n − 1) + 1 �− → 2 r n ( k n + 1) Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 16 / 42

  33. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Probabilistic walks: iteration Again there is a Kleisli extension endomap d # : D ( Z ) → D ( Z ) � � r 1 k 1 + · · · + r n k n � � 2 r 1 ( k 1 − 1) + 1 1 2 r 1 ( k 1 + 1) + · · · + 1 2 r n ( k n − 1) + 1 �− → 2 r n ( k n + 1) The subset of successors of 0 ∈ Z , after n steps, is obtained as the n -th iterate: � n � n � n � n � � � � d # � n � n − 1 0 1 n 2 n ( − n )+ 2 n ( − n +2)+ . . . + ( n − 2)+ (1 0) = 2 n ( n ) 2 n Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 16 / 42

  34. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Probabilistic walks: iteration Again there is a Kleisli extension endomap d # : D ( Z ) → D ( Z ) � � r 1 k 1 + · · · + r n k n � � 2 r 1 ( k 1 − 1) + 1 1 2 r 1 ( k 1 + 1) + · · · + 1 2 r n ( k n − 1) + 1 �− → 2 r n ( k n + 1) The subset of successors of 0 ∈ Z , after n steps, is obtained as the n -th iterate: � n � n � n � n � � � � d # � n � n − 1 0 1 n 2 n ( − n )+ 2 n ( − n +2)+ . . . + ( n − 2)+ (1 0) = 2 n ( n ) 2 n It is iteration in the Kleisli category of the distribution monad D . Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 16 / 42

  35. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 17 / 42

  36. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks Situation / plan • Quantum walks are standardly described as endomap S → S (see eg. work of Julia Kempe) Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 17 / 42

  37. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks Situation / plan • Quantum walks are standardly described as endomap S → S (see eg. work of Julia Kempe) • Here it will be shown that there is also an (equivalent) coalgebraic / monadic description. Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 17 / 42

  38. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: endomap definition I Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 18 / 42

  39. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: endomap definition I Two vector spaces • M ( Z ), the free vector space on Z (over C ), with base vectors written as: | k � ∈ M ( Z ), for k ∈ Z • C 2 , the one qubit space, with base vectors | ↑ � and | ↓ � (think of the direction of the walk) Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 18 / 42

  40. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: endomap definition I Two vector spaces • M ( Z ), the free vector space on Z (over C ), with base vectors written as: | k � ∈ M ( Z ), for k ∈ Z • C 2 , the one qubit space, with base vectors | ↑ � and | ↓ � (think of the direction of the walk) � | ↑ � ⊗ | k � The state space is C 2 ⊗ M ( Z ), with basis | ↓ � ⊗ | k � Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 18 / 42

  41. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: endomap definition II Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 19 / 42

  42. � � Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: endomap definition II The relevant endomap is: q C 2 ⊗ M ( Z ) � C 2 ⊗ M ( Z ) 1 1 2 | ↑ � ⊗ | k − 1 � + 2 | ↓ � ⊗ | k + 1 � | ↑ � ⊗ | k � � √ √ 1 1 2 | ↑ � ⊗ | k − 1 � – 2 | ↓ � ⊗ | k + 1 � | ↓ � ⊗ | k � � √ √ Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 19 / 42

  43. � � Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: endomap definition II The relevant endomap is: q C 2 ⊗ M ( Z ) � C 2 ⊗ M ( Z ) 1 1 2 | ↑ � ⊗ | k − 1 � + 2 | ↓ � ⊗ | k + 1 � | ↑ � ⊗ | k � � √ √ 1 1 2 | ↑ � ⊗ | k − 1 � – 2 | ↓ � ⊗ | k + 1 � | ↓ � ⊗ | k � � √ √ Implicitly, the Hadamard operator H : C 2 → C 2 is used:   1  1 1 H = √  1 − 1 2 Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 19 / 42

  44. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities I Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 20 / 42

  45. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities I Obtaining probabilities in quantum walks • We are interested in the probability of reaching | k � after n steps. Starting from 0 — more precisely, from | ↑ � ⊗ | 0 � . Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 20 / 42

  46. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities I Obtaining probabilities in quantum walks • We are interested in the probability of reaching | k � after n steps. Starting from 0 — more precisely, from | ↑ � ⊗ | 0 � . • We do so by n -times iterating the endomap q , and then measuring in the basis | k � . Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 20 / 42

  47. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities I Obtaining probabilities in quantum walks • We are interested in the probability of reaching | k � after n steps. Starting from 0 — more precisely, from | ↑ � ⊗ | 0 � . • We do so by n -times iterating the endomap q , and then measuring in the basis | k � . • The sum of norms | α i | 2 of amplitudes α i for | k � then gives the probability. Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 20 / 42

  48. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities II Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 21 / 42

  49. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities II 1 1 | ↑ � ⊗ | 0 � �→ 2 | ↑ � ⊗ | -1 � + 2 | ↓ � ⊗ | 1 � √ √ Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 21 / 42

  50. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities II 1 1 | ↑ � ⊗ | 0 � �→ 2 | ↑ � ⊗ | -1 � + 2 | ↓ � ⊗ | 1 � √ √  2 | 2 = 1 | 1 | -1 � √  2 probabilities 2 | 2 = 1 | 1 | 1 � √  2 Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 21 / 42

  51. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities II 1 1 | ↑ � ⊗ | 0 � �→ 2 | ↑ � ⊗ | -1 � + 2 | ↓ � ⊗ | 1 � √ √  2 | 2 = 1 | 1 | -1 � √  2 probabilities 2 | 2 = 1 | 1 | 1 � √  2 1 2 | ↑ � ⊗ | -2 � + 1 2 | ↓ � ⊗ | 0 � �→ 1 2 | ↑ � ⊗ | 0 � − 1 2 | ↓ � ⊗ | 2 � + Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 21 / 42

  52. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities II 1 1 | ↑ � ⊗ | 0 � �→ 2 | ↑ � ⊗ | -1 � + 2 | ↓ � ⊗ | 1 � √ √  2 | 2 = 1 | 1 | -1 � √  2 probabilities 2 | 2 = 1 | 1 | 1 � √  2 2 | ↑ � ⊗ | -2 � + 1 1 2 | ↓ � ⊗ | 0 � �→ 1 2 | ↑ � ⊗ | 0 � − 1 2 | ↓ � ⊗ | 2 � +  2 | 2 = 1 | 1 | -2 �  4   2 | 2 + | 1 2 | 2 = 1 | 1 probabilities | 0 � 2  2 | 2 = 1 | − 1  | 2 �  4 Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 21 / 42

  53. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities II 1 1 | ↑ � ⊗ | 0 � �→ 2 | ↑ � ⊗ | -1 � + 2 | ↓ � ⊗ | 1 � √ √  2 | 2 = 1 | 1 | -1 � √  2 probabilities 2 | 2 = 1 | 1 | 1 � √  2 2 | ↑ � ⊗ | -2 � + 1 1 2 | ↓ � ⊗ | 0 � �→ 1 2 | ↑ � ⊗ | 0 � − 1 2 | ↓ � ⊗ | 2 � +  2 | 2 = 1 | 1 | -2 �  4   2 | 2 + | 1 2 | 2 = 1 | 1 probabilities | 0 � 2  2 | 2 = 1 | − 1  | 2 �  4 �→ · · · (next page) Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 21 / 42

  54. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities II Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 22 / 42

  55. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities II 1 1 1 2 | ↑ � ⊗ | -3 � + 2 | ↓ � ⊗ | -1 � + 2 | ↑ � ⊗ | -1 � · · · �→ √ √ √ 2 2 2 1 1 1 − 2 | ↓ � ⊗ | 1 � + 2 | ↑ � ⊗ | -1 � + 2 | ↓ � ⊗ | 1 � √ √ √ 2 2 2 1 1 2 | ↑ � ⊗ | 1 � + 2 | ↓ � ⊗ | 3 � − √ √ 2 2 Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 22 / 42

  56. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities II 1 1 1 2 | ↑ � ⊗ | -3 � + 2 | ↓ � ⊗ | -1 � + 2 | ↑ � ⊗ | -1 � · · · �→ √ √ √ 2 2 2 1 1 1 − 2 | ↓ � ⊗ | 1 � + 2 | ↑ � ⊗ | -1 � + 2 | ↓ � ⊗ | 1 � √ √ √ 2 2 2 1 1 2 | ↑ � ⊗ | 1 � + 2 | ↓ � ⊗ | 3 � − √ √ 2 2 1 1 1 2 | ↑ � ⊗ | -3 � + 2 | ↑ � ⊗ | -1 � + 2 | ↓ � ⊗ | -1 � = √ √ √ 2 2 1 1 − 2 | ↑ � ⊗ | 1 � + 2 | ↓ � ⊗ | 3 � √ √ 2 2 Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 22 / 42

  57. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities II 1 1 1 2 | ↑ � ⊗ | -3 � + 2 | ↓ � ⊗ | -1 � + 2 | ↑ � ⊗ | -1 � · · · �→ √ √ √ 2 2 2 1 1 1 − 2 | ↓ � ⊗ | 1 � + 2 | ↑ � ⊗ | -1 � + 2 | ↓ � ⊗ | 1 � √ √ √ 2 2 2 1 1 2 | ↑ � ⊗ | 1 � + 2 | ↓ � ⊗ | 3 � − √ √ 2 2 1 1 1 2 | ↑ � ⊗ | -3 � + 2 | ↑ � ⊗ | -1 � + 2 | ↓ � ⊗ | -1 � = √ √ √ 2 2 1 1 − 2 | ↑ � ⊗ | 1 � + 2 | ↓ � ⊗ | 3 � √ √ 2 2  2 | 2 = 1 1 | -3 � | √  8 2   2 | 2 + | 2 | 2 = 5  | 1 1 | -1 �  √ √  8 2 probabilities 2 | 2 = 1 1 | 1 � | − √  8  2   2 | 2 = 1 1  | 3 � | √  8 2 Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 22 / 42

  58. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities II 1 1 1 2 | ↑ � ⊗ | -3 � + 2 | ↓ � ⊗ | -1 � + 2 | ↑ � ⊗ | -1 � · · · �→ √ √ √ 2 2 2 1 1 1 − 2 | ↓ � ⊗ | 1 � + 2 | ↑ � ⊗ | -1 � + 2 | ↓ � ⊗ | 1 � √ √ √ 2 2 2 1 1 2 | ↑ � ⊗ | 1 � + 2 | ↓ � ⊗ | 3 � − √ √ 2 2 1 1 1 2 | ↑ � ⊗ | -3 � + 2 | ↑ � ⊗ | -1 � + 2 | ↓ � ⊗ | -1 � = √ √ √ 2 2 1 1 − 2 | ↑ � ⊗ | 1 � + 2 | ↓ � ⊗ | 3 � √ √ 2 2  2 | 2 = 1 1 | -3 � | √  8 2   2 | 2 + | 2 | 2 = 5  | 1 1 | -1 �  √ √  8 2 probabilities 2 | 2 = 1 1 | 1 � | − √  8  2   2 | 2 = 1 1  | 3 � | √  8 2 There is “drift to the left” due to interference. Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 22 / 42

  59. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities III Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 23 / 42

  60. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum walks: iteration and probabilities III The resulting tree of quantum walk probabilities starts as: · · · · · · -3 -2 -1 0 1 2 3 1 � � � � 1 1 2 2 � � � � � � � � 1 1 1 4 2 4 � � � � � � � � � � � � 1 5 1 1 8 8 8 8 � � � � � � � � � � � � � � � � 1 5 1 1 1 16 8 8 8 16 The matrix involved — Hadamard’s H in this case — determines the drifting, and thus how the tree is traversed. This may yield optimisations in data processing. Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 23 / 42

  61. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Basic isomorphism Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 24 / 42

  62. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Basic isomorphism LEMMA C 2 ⊗ M ( X ) ∼ = M ( X + X ) where + is disjoint union Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 24 / 42

  63. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Basic isomorphism LEMMA C 2 ⊗ M ( X ) ∼ = M ( X + X ) where + is disjoint union Proof By the following chain of isomorphisms: C 2 ⊗ M ( X ) = ( C ⊕ C ) ⊗ M ( X ) Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 24 / 42

  64. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Basic isomorphism LEMMA C 2 ⊗ M ( X ) ∼ = M ( X + X ) where + is disjoint union Proof By the following chain of isomorphisms: C 2 ⊗ M ( X ) = ( C ⊕ C ) ⊗ M ( X ) ∼ = C ⊗ M ( X ) ⊕ C ⊗ M ( X ) by distributivity Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 24 / 42

  65. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Basic isomorphism LEMMA C 2 ⊗ M ( X ) ∼ = M ( X + X ) where + is disjoint union Proof By the following chain of isomorphisms: C 2 ⊗ M ( X ) = ( C ⊕ C ) ⊗ M ( X ) ∼ = C ⊗ M ( X ) ⊕ C ⊗ M ( X ) by distributivity ∼ M ( X ) ⊕ M ( X ) = since C is tensor unit Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 24 / 42

  66. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Basic isomorphism LEMMA C 2 ⊗ M ( X ) ∼ = M ( X + X ) where + is disjoint union Proof By the following chain of isomorphisms: C 2 ⊗ M ( X ) = ( C ⊕ C ) ⊗ M ( X ) ∼ = C ⊗ M ( X ) ⊕ C ⊗ M ( X ) by distributivity ∼ M ( X ) ⊕ M ( X ) = since C is tensor unit ∼ M ( X + X ) = ⊕ is also coproduct of spaces, and M is a free functor. Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 24 / 42

  67. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum endomorphism as coalgebra Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 25 / 42

  68. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum endomorphism as coalgebra THEOREM Linear maps (in Vect C ) C 2 ⊗ M ( Z ) − → C 2 ⊗ M ( Z ) correspond bijectively to functions (in Sets ) → M ( Z + Z ) 2 Z − . that is, to coalgebras with state space Z of the functor M (2 · − ) 2 . Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 25 / 42

  69. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum endomorphism as coalgebra THEOREM Linear maps (in Vect C ) C 2 ⊗ M ( Z ) − → C 2 ⊗ M ( Z ) correspond bijectively to functions (in Sets ) → M ( Z + Z ) 2 Z − . that is, to coalgebras with state space Z of the functor M (2 · − ) 2 . Proof C 2 ⊗ M ( Z ) − → C 2 ⊗ M ( Z ) linear = = = = = = = = = = = = = = = = = = = = = = M ( Z + Z ) − → M ( Z + Z ) linear Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 25 / 42

  70. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum endomorphism as coalgebra THEOREM Linear maps (in Vect C ) C 2 ⊗ M ( Z ) − → C 2 ⊗ M ( Z ) correspond bijectively to functions (in Sets ) → M ( Z + Z ) 2 Z − . that is, to coalgebras with state space Z of the functor M (2 · − ) 2 . Proof C 2 ⊗ M ( Z ) − → C 2 ⊗ M ( Z ) linear = = = = = = = = = = = = = = = = = = = = = = M ( Z + Z ) − → M ( Z + Z ) linear = = = = = = = = = = = = = = = = = = = = Z + Z − → M ( Z + Z ) Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 25 / 42

  71. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Quantum endomorphism as coalgebra THEOREM Linear maps (in Vect C ) C 2 ⊗ M ( Z ) − → C 2 ⊗ M ( Z ) correspond bijectively to functions (in Sets ) → M ( Z + Z ) 2 Z − . that is, to coalgebras with state space Z of the functor M (2 · − ) 2 . Proof C 2 ⊗ M ( Z ) − → C 2 ⊗ M ( Z ) linear = = = = = = = = = = = = = = = = = = = = = = M ( Z + Z ) − → M ( Z + Z ) linear = = = = = = = = = = = = = = = = = = = = Z + Z − → M ( Z + Z ) = = = = = = = = = = = = = = = = = → M ( Z + Z ) 2 Z − Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 25 / 42

  72. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Qubit action is monadic! Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 26 / 42

  73. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Qubit action is monadic! In the background, there is a new monad transformer result. Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 26 / 42

  74. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Qubit action is monadic! In the background, there is a new monad transformer result. LEMMA If T is a monad, then so is X �→ T ( n · X ) n , for each n ∈ N Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 26 / 42

  75. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Qubit action is monadic! In the background, there is a new monad transformer result. LEMMA If T is a monad, then so is X �→ T ( n · X ) n , for each n ∈ N For quantum walks we use T = M and n = 2. Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 26 / 42

  76. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Outline Introduction Walks illustrating computation types Non-deterministic walks Probabilistic walks Quantum walks Quantum walks, coalgebraically Matrix representation Reversible computation Turing Machines Conclusions Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 27 / 42

  77. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Three representations of quantum walks Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 28 / 42

  78. Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Three representations of quantum walks 1 Endomaps C 2 ⊗ M ( Z ) − → C 2 ⊗ M ( Z ) Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 28 / 42

  79. � � Introduction Walks illustrating computation types Matrix representation Reversible computation Radboud University Nijmegen Turing Machines Conclusions Three representations of quantum walks 1 Endomaps C 2 ⊗ M ( Z ) − → C 2 ⊗ M ( Z ) 1 1 2 | ↑ � ⊗ | k − 1 � + 2 | ↓ � ⊗ | k + 1 � | ↑ � ⊗ | k � � √ √ 1 1 2 | ↑ � ⊗ | k − 1 � − 2 | ↓ � ⊗ | k + 1 � | ↓ � ⊗ | k � � √ √ Bart Jacobs 30/10/10, Oxford Coalgebraic Walks 28 / 42

Recommend


More recommend