claudia draxl why co core spectroscopy state te of of th
play

Claudia draxl Why co core spectroscopy? State te of of th the - PowerPoint PPT Presentation

Claudia draxl Why co core spectroscopy? State te of of th the art methodolo logy gy Spe c tra Ba nd struc ture Gro und sta te Struc uctur tural fing ngerp erpri rints W. Olovsson et al., PRB 83 , 195206 (2011). Struc uctur tural


  1. Claudia draxl

  2. Why co core spectroscopy?

  3. State te of of th the art methodolo logy gy Spe c tra Ba nd struc ture Gro und sta te

  4. Struc uctur tural fing ngerp erpri rints W. Olovsson et al., PRB 83 , 195206 (2011).

  5. Struc uctur tural fi fing ngerp erpri rints C. Cocchi et al., PRB (2016).

  6. Struc uctur tural fing ngerp erpri rints C. Vorwerk, C. Cocchi, and CD Layer Optic s: Microscopic modeling of optical coeffcients in layered materials Comp. Phys. Commun. 201 , 119 (2016). C. Cocchi et al., PRB (2016).

  7. Beth Bethe-Salp alpeter eq equa uation

  8. Beth the-Salpe peter r equat quation

  9. Ca Carb rbon-bas ased materials als

  10. Organic ic molecul ules N 1s π * (LUMO) π * (LUMO+n) C. Cocchi & CD, PRB 92 , 205105 (2015). Moldt et al. Langmuir 31, 1048 (2015)

  11. XAS S of of mole lecu cule les & SAM & SAMs 3 tra nsitio ns Pe a k po sitio ns unc ha ng e d Simila r inte nsitie s o f A & C

  12. XAS S of of mole lecu cule les & SAM & SAMs Mixing o f tra nsitio ns

  13. ̶ Alte terna rnatives es? Spe c tra Ba nd struc ture + Gro und sta te

  14. Co Core re-hole vs vs BS BSE Mg L 2.3 e dg e in Mg O T. Mizoguchi, et al., Ultramicroscopy 106 , 1120 (2006) . W. L. O ’ Brien, et al., Phys. Rev. B 44 , 1013 (1991) . W. Olovsson, et al., PRB 79 , 041102(R) (2009).

  15. Co Core re-hole vs vs BS BSE L iF W. Olovsson, I. Tanaka, T. Mizoguchi, P. Puschnig, and CAD, PRB 79, 041102(R) (2009).

  16. Back ack to to BS BSE …

  17. Probing ng el elec ectro tron-hole le Ca L 2,3 e dg e in Ca O correlat lation C. Vorwerk, C. Cocchi and CD, Phys. Rev. B. 95 , 155121 (2017).

  18. Probing ng el elec ectro tron-hole le Ca L 2,3 e dg e in Ca O correlat lation

  19. Local al-fi field effe effects Ca L 2,3 e dg e in Ca O -1 ] |G+q| max [a 0 10 6 2 0

  20. Sol Solar-cell mate teri rials

  21. Inclu cluding relati tivity ty Pb M 4 e dg e in Pb I 2 C. Vorwerk, C. Cocchi and CD, Phys. Rev. B. 95 , 155121 (2017).

  22. Kes este teri rites S L 2,3 e dg e in CZT S A. Manoharan et al., in preparation

  23. Sul ulfur L ur L 2,3 ,3 edge ge

  24. Dens Densities of of sta tate tes

  25. Exc Exciton characte ter

  26. Exc Exciton characte ter

  27. Exc Exciton characte ter

  28. Exc Exciton characte ter

  29. Exc Exciton characte ter

  30. Exc Exciton characte ter

  31. Exc Exciton characte ter

  32. A. Manoharan et al., Theo eory ry vs vs ex experi eriment in preparation [HZB] J. H. Alsmeier & M. Bär, Helmholtz Zentrum Berlin [NUS] A. Rusydi, National University of Singapore

  33. Our instr Our trum ument … A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone, S. Rigamonti, S. Sagmeister, U. Werner, and C. Draxl exciting : a full-potential all-electron package implementing density-functional theory and many- body perturbation theory J. Phys: Condens. Matter 26, 363202 (2014). exciting is a full-potential all-electron density-functional-theory package implementing the families of linearized augmented planewave methods. It can be applied to all kinds of materials, irrespective of the atomic species involved, and also allows for exploring the physics of core electrons. A particular focus are excited states within many-body perturbation theory.

  34. Our instr Our trum ument … A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone, S. Rigamonti, S. Sagmeister, U. Werner, and C. Draxl exciting : a full-potential all-electron package implementing density-functional theory and many- body perturbation theory J. Phys: Condens. Matter 26, 363202 (2014).

  35. Tea eamwo work rk

Recommend


More recommend